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Abstract— Many applications of machine learning involve 

analysis of sparse high-dimensional data, in which the number of 

input features is larger than the number of data samples. 

Standard inductive learning methods may not be sufficient for 

such data, and this provides motivation for non-standard 

learning settings. This paper investigates a new learning 

methodology called Learning through Contradictions or 

Universum support vector machine (U-SVM) [1], [2]. U-SVM 

incorporates a priori knowledge about application data, in the 

form of additional Universum samples, into the learning process. 

This paper investigates possible advantages of U-SVM versus 

standard support vector machine (SVM), and describes the 

practical conditions necessary for the effectiveness of the U-SVM. 

These conditions are based on the analysis of the univariate 

histograms of projections of training samples onto the normal 

direction vector of (standard) SVM decision boundary. Several 

empirical comparisons are presented to illustrate the practical 

utility of the proposed approach. 

 
Index Terms— Learning through contradiction, model 

selection, support vector machines, Universum SVM. 

I. INTRODUCTION 

Sparse high-dimensional data is common in modern machine 

learning applications. In micro-array data analysis, 

technologies have been designed to measure the gene 

expression levels of tens of thousands of genes in a single 

experiment. However, the sample size in each data set is 

typically small ranging from tens to low hundreds due to the 

high cost of measurements. Similarly, in brain imaging studies 

the dimensionality of the input data vector is larger than the 

sample size. Such sparse high-dimensional problems represent 

new challenges for classification methods.  

Most approaches to learning with high-dimensional data 

focus on improving existing inductive methods that try to 

incorporate a priori knowledge about the optimal model [3-5]. 

Common examples include: 
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 clever preprocessing and feature extraction techniques 

that incorporate application-domain knowledge into 

the selection of a small number of informative 

features; 

 selection of good kernels in SVM methods; 

 specification of the prior distributions in Bayesian 

methods. 

These techniques have been successfully used in many real-

life applications [6]. 

Another approach to such ill-posed high-dimensional 

problems is to use non-standard learning settings that 

incorporate a priori knowledge about application data and/or 

the goal of learning directly into the problem formulation. In 

order to illustrate several non-standard methodologies, 

consider the task of hand-written digit recognition [3]. Under 

standard inductive learning setting, one has to estimate the 

class decision boundaries from labeled examples of 

handwritten digits. Then the prediction accuracy of a classifier 

is measured using an independent test set. Under the 

transductive [1] and semi-supervised learning settings [7], the 

learning system uses both labeled (training) and unlabeled 

(test) samples, in order to predict class labels for future inputs. 

Under the setting called Learning with Structured Data [2], the 

training data originates from t different persons (groups), and 

this additional information (about group labels) is incorporated 

into learning. Here the goal of learning is to estimate a single 

predictive model, since the group labels are not provided for 

test inputs. Another possible scenario is to assume that both 

the training and test data are generated by t persons, and that 

the group label is known for both training and test data. This 

setting known as Multi-Task Learning (MTL) requires 

estimation of t related classifiers [8-10]. Yet another 

modification of standard inductive learning assumes that along 

with labeled training data (i.e., handwritten digits) one has 

additional a priori information in the form of other 

handwritten letters. These handwritten letters reflect the style 

of handwriting and can potentially improve generalization. 

This leads to the setting known as Learning through 

Contradiction, or learning in the Universum environment [2]. 

Such non-standard learning settings reflect properties of real-

life applications, and can result in improved generalization, 

relative to standard inductive learning. However, these new 

methodologies are more complex, and their advantages and 

limitations are not well understood. 

The idea of ‗inference through contradictions‘ was 

introduced by Vapnik [1, 2] in order to incorporate a priori 

knowledge into the learning process. Recall that standard 
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inductive learning methods introduce a priori knowledge about 

the space of admissible models. It may be argued that in real 

applications (especially with sparse high-dimensional data) 

such ‗good‘ parameterizations are hard to come by. However, 

it may be feasible to introduce a priori knowledge about 

admissible data samples. These additional unlabeled data 

samples (called virtual examples or the Universum) are used 

along with labeled training samples, to perform an inductive 

inference. Examples from the Universum are not real training 

samples. However, they reflect a priori knowledge about 

application domain. For example, if the goal of learning is to 

discriminate between handwritten digits 5 and 8, one can 

introduce additional ‗knowledge‘ in the form of other 

handwritten digits 0, 1, 2, 3, 4, 6, 7, 9. These examples from 

the Universum contain certain information about handwritten 

digits, but they cannot be assigned to any of the two classes (5 

or 8). Also note that Universum samples do not have the same 

distribution as labeled training samples. 

Next, we briefly review optimization formulation for the 

Universum SVM classifier [2]. Let us consider an inductive 

setting (for binary classification), where we have labeled 

training data and a set of unlabeled examples from the 

Universum. The Universum contains data that belongs to the 

same application domain as the training data, but these 

samples are known not to belong to either class. These 

Universum samples are incorporated into inductive learning as 

explained next. Let us assume that labeled training data is 

linearly separable using large margin. Then the Universum 

samples can either fall inside the margin or outside the margin 

borders (see Fig. 1). Note that we should favor hyperplane 

models where the Universum samples lie inside the margin, 

because these samples do not belong to either class. Such 

Universum samples (inside the margin) are called 

contradictions, because they are falsified by the model (i.e., 

have non-zero slack variables for either class label). The 

Universum learning implements a trade-off between 

explaining training samples (using large-margin hyperplanes) 

and maximizing the number of contradictions (on the 

Universum).  

The quadratic optimization formulation for implementing 

an SVM-style inference through contradictions is shown next 

following [2]. For labeled training data, we use standard SVM 

soft-margin loss with slack variables i . For improved 

readability, we show only linear parameterization for the 

Universum SVM; however it can be generalized to the 

nonlinear case using kernels. For the Universum samples

*

jx , we need to penalize the real-valued outputs of our 

classifier that are ‗large‘. This is accomplished using –

insensitive loss (as in standard support vector regression). Let 
*

j  denote slack variables for samples from the Universum.  

Then the Universum SVM formulation can be stated as: 
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Parameters C and 
*C  control the trade-off between 

minimization of errors and the maximization of the number of 

contradictions. Selecting ‗good‘ values for these parameters 

constitutes model selection (usually performed via 

resampling). When 
*C =0, this U-SVM formulation is 

reduced to standard soft-margin SVM.  

The solution to the optimization problem (1) defines the 

large margin hyper plane 
* *( ) ( )f bx w x  that 

incorporates a priori knowledge (i.e., Universum samples) into 

the final model. The dual formulation for inductive SVM in 

the Universum environment, and its nonlinear (kernelized) 

version can be obtained using optimization theory and 

standard SVM techniques, where the decision function in the 

dual space is constructed by using a kernel matrix of both the 

labeled samples and the Universum samples [2]. This 

quadratic optimization problem is convex due to convexity of 

the constraints for labeled data and for the Universum. 

Efficient computational algorithms for solving this problem 

involve modifications of standard SVM software [11]. The U-

SVM software is available at http: //www.kyb.tuebingen.mpg. 

de/bs/people/fabee/universvm.html.  

Universum SVM performs regularization that depends on 

an additional set of unlabeled data (i.e., Universum) available 

to the learning algorithm. In this respect, it is similar to 

another well-known example of data-dependent regularization, 

called semi-supervised learning (SSL) or transduction [1,2,7]. 

However, the Universum learning is conceptually different 

from SSL, because the Universum data is not from the same 

distribution as the labeled training data. It is possible to 

incorporate the Universum into semi-supervised learning or 

transduction. In fact, Universum learning was originally 

proposed under the transductive learning setting [1]. More 

recently, SSL with Universum has been discussed in [12,13], 

which uses squared loss, rather than hinge loss, in its 

optimization formulations. In this paper, however, we only 

address Vapnik‘s inductive SVM-style inference through 

contradictions [2].   

A successful practical application of U-SVM depends on 

two design factors: implementation of model selection and 

selection (or generation) of Universum data. Note that model 

selection becomes rather difficult due to the fact that the 

kernelized U-SVM has 4 tunable parameters: C ,
*C , kernel 

parameter and . In addition, we need to specify the number 

of Universum samples. Standard SVM, in contrast, has only 

two tuning parameters. So in practice, standard SVM may 

http://www.kyb.tuebingen.mpg.de/bs/people/fabee/universvm.html
http://www.kyb.tuebingen.mpg.de/bs/people/fabee/universvm.html
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yield better results than U-SVM, simply because it has an 

inherently simpler model selection. Alternatively, a poor 

generalization performance of U-SVM may be caused by a 

bad choice of the Universum data. In practice, it may be 

difficult to separate these two factors, and all existing 

empirical studies ([11-14]) are performed by expert 

researchers. In the absence of effective strategies for 

parameter tuning and practical criteria for the good choice of a 

Universum, general users cannot easily apply the U-SVM to 

their problems. So the main objective of this paper is to derive 

practical conditions for the effectiveness of Universum 

learning.  

Initial prior work [11], [15] focused on the algorithmic 

implementation of the U-SVM, and its empirical validation. 

These studies confirmed that Universum learning can improve 

generalization performance, especially for sparse high-

dimensional data. However, the obtained performance 

strongly depends on a good choice of the Universum. More 

recent studies have proposed and analyzed criteria for a good 

choice of a Universum [12-14]. These studies provide 

different characterizations related to the intuitive notion that a 

good Universum set should be positioned ‗in between‘ the two 

classes, as illustrated in Fig. 1. The idea that ‗a good 

universum needs to be positioned ‗in-between‘ the two 

classes‘ is implicit in Vapnik‘s original formulation and in the 

loss function which penalizes Universum samples that are 

close to either class. However, after introduction of U-SVM 

several researchers tried to quantify this notion explicitly, in 

terms of (analytic) properties of the Universum and/or labeled 

training data. First, Sinz et al [14] showed that the optimal 

decision boundary of the U-SVM tends to make the normal 

vector orthogonal to the principal direction of the Universum 

data set. This condition holds for both the original Vapnik‘s 

Universum formulation (1) and for the least-squares U-SVM, 

where the squared loss function is adopted for both labeled 

and Universum samples. Further, they show the connection 

(equivalency) between the least-squares U-SVM and the 

maximization of an explicit analytic criterion. Later, Chen and 

Zhang [13], proposed a graph-theoretic index for measuring 

the ‗in-betweenness‘ of Universum samples. However, they 

assume SSL framework, and use squared loss in their SVM-

style optimization formulation. Their approach aims at 

selecting a portion of the Universum data set that is ‗useful‘ 

for boosting generalization performance. 

Our work pursues the same general objective as [14], i.e. 

the characterization of a good Universum for Vapnik‘s 

original formulation (1). However, we take a more practical 

and specific approach. That is, we ask the following questions:  

i. Can a given Universum data set improve 

generalization performance of standard SVM 

classifier trained using only labeled data? 

ii. Can we provide practical conditions for (i), based 

on the geometric properties of the Universum data 

and labeled training data?  

This approach is more suitable for non-expert users, because: 

- practitioners are interested in using U-SVM only if it 

provides an improvement over standard SVM; 

- the problem of (full-blown) model selection for the 

U-SVM is alleviated, because its two parameters 

(kernel parameter and C ) are tuned separately, 

during training standard SVM classifier. 

The proposed strategy for analyzing practical conditions for 

the effectiveness of the Universum is outlined below: 

a. estimate standard SVM classifier for a given 

(labeled) training data set. Note that this step includes 

optimal model selection, i.e. optimal tuning of the 

regularization parameter C and kernel; 

b. generate low-dimensional representation of training 

data  by projecting it onto the normal direction 

vector of SVM hyperplane estimated in (a); 

c. project the Universum data onto the normal direction 

vector of SVM hyperplane, and analyze projected 

Universum data in relation to projected training data. 

Then statistical properties of the projected Universum data 

relative to labeled training data, in (c), may suggest whether 

using this Universum will improve the prediction accuracy of 

standard SVM estimated in step (a). 

 Selection of the Universum is usually application-dependent 

[2], [11]. However, there is a possibility of generating 

Universum data directly from labeled training data. This 

approach is called random averaging and it does not rely on a 

priori knowledge about application domain.  As illustrated in 

Fig. 2, such Universum samples are generated by (randomly) 

selecting positive and negative training samples, and 

computing their average. For the problem of handwritten digit 

recognition, where the goal is to discriminate between 

handwritten digits 5 and 8, Fig. 3 shows two randomly chosen 

labeled examples and the corresponding Universum example 

obtained via averaging. 

The paper is organized as follows. The proposed 

methodology is motivated by analysis of random averaging 

(RA) Universum. RA Universum samples are generated 

directly from labeled training data, so we can expect to 

express conditions for the effectiveness of RA Universum in 

terms of the statistical properties of labeled data. These 

properties can be displayed using a novel representation of 

training data via univariate histograms of projections, 

introduced in Section II. Section III specifies practical 

conditions for the effectiveness of RA Universum. Section IV 

provides empirical examples of several real-life and synthetic 

data sets, illustrating the effectiveness of RA Universum. 

Section V extends the conditions to other types of Universa, 

and demonstrates their effectiveness via empirical 

comparisons. Section VI provides analytic interpretation of 

these conditions, by relating them to analytic conditions in 

Sinz et al [14]. Finally, conclusions are presented in Section 

VII. 

II. REPRESENTATION OF HIGH-DIMENSIONAL DATA VIA 

UNIVARIATE PROJECTIONS 

Let us consider binary classification problems with sparse 

high-dimensional data, where the input dimensionality is 

much larger than training sample size ( d n ). Since n  
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points generate an n -dimensional subspace (in the input 

space), the projections of the data points onto any direction 

vector in the d n  dimensional subspace are all zeros. Also, 

the projections of the data points onto any vectors orthogonal 

to the hyperplane generated by the data are non-zero 

constants. Ahn and Marron [16] analyzed asymptotic ( d n ) 

properties of high-dimensional data for the binary 

classification setting, under the assumption that input variables 

are ‗nearly independent‘. Their analysis suggests that there 

exists a direction vector such that the projections of data 

samples from each class onto this direction vector collapse 

onto a single point. This projection vector is called the 

Maximal Data Piling (MDP) direction vector [16].  

Various linear classifiers differ in approach for selecting the 

value of the vector w , specifying the normal direction of a 

hyperplane ( ) 0bw x . For linear SVM classifiers under 

sparse high-dimensional settings, most data samples from one 

class lie on the margin border, and their projections onto the 

normal direction vector w  of the SVM hyperplane tend to be 

the same (i.e., they project onto the same point). For high-

dimensional settings, most linear classifiers (SVM, regularized 

linear discriminant analysis, etc.) yield the same direction 

vector w that coincides (asymptotically) with MDP direction 

vector (as shown in [17, 18]). 

Asymptotic analysis also suggests a poor generalization for 

such high-dimensional settings, because all of the training data 

samples become support vectors (i.e., lie on the margin 

borders). In real-life applications, analytic assumptions in [16] 

may not hold, because: 

 input features are often correlated,  

 many application studies use nonlinear SVM. 

So the data piling effect can be observed only 

approximately, in the sense that most data samples lie near the 

margin borders. Next, we illustrate this data piling effect 

using the WinMac text classification data set (UCI KDD 20 

Newsgroups entry). This is a binary classification data set 

where each sample has 7511 binary features. The data is very 

sparse, and on average only a small portion (~7.3%) of 

features are non-zeros. We use 200 samples for training, and 

200 independent validation samples for tuning regularization 

parameter C of a linear SVM. Fig. 4a shows the histogram of 

univariate projections of the training data onto the normal 

direction vector w  of the SVM hyperplane. As expected, the 

training data is well separated and training samples from each 

class cluster near the margin borders, marked as +1 and -1. 

Also shown in Fig. 4b is the histogram of projections of the 

Universum generated from labeled training data via Random 

Averaging. As training samples cluster at the margin borders, 

Universum samples will cluster near the linear SVM decision 

boundary (marked 0 on the horizontal axis). In Fig. 4, the y 

axis of a histogram indicates the number of samples and the 

histogram of the projections are evaluated, separately for each 

class, by first calculating the range of projected values (i.e., 

max_value – min_value), and then dividing this range into 10 

different bins. This same procedure is used for all other 

histograms of projections in this paper. Representation of 

high-dimensional SVM classifiers using univariate histograms 

of projections is quite useful for understanding properties of 

such classifiers [19]. In this paper, univariate histograms of 

projections are used for understanding conditions for the 

effectiveness of Universum learning. 

For the WinMac data set, U-SVM is not likely to provide an 

improvement over linear SVM, because optimization 

formulation (1) enforces the Universum samples to lie near 

decision boundary. However, as shown in Fig. 4b, the 

Universum samples already lie near the optimal SVM 

hyperplane, so no additional improvement due to RA 

Universum can be expected for this data set. 

Empirical comparisons between standard linear SVM and 

U-SVM for the WinMac data set confirm our intuitive 

interpretation of Fig. 4. These comparisons use,  

 200 training samples (100 samples per each class); 

 200 independent samples for validation, where 

validation data set is used for tuning parameters of 

SVM and U-SVM; 

 1,000 Universum samples generated from training 

data via random averaging; 

 1,000 independent test samples (used to estimate test 

error for each method). 

All samples are randomly selected from the WinMac data set, 

and the experiments are repeated 10 times. During model 

selection, possible values for tuning parameters are as follows:  

- parameter C ~ [0.01, 0.1, 1, 10, 100, 1000], 

- C*/C ~[0.01, 0.03, 0.1, 0.3, 1, 3, 10], 

- ~ [0, 0.02, 0.05, 0.1, 0.2].  

In all experiments presented in this paper, the regularization 

parameter C and the kernel parameter for the U-SVM are 

selected via training a standard SVM classifier (using only the 

labeled training data). So model selection for U-SVM involves 

tuning only two parameters, C*/C and . 
TABLE I 

COMPARISON OF LINEAR SVM AND U-SVM ON WINMAC DATA SET 

Training /validation set size 200 

Average training error rate (SVM) 0 

Average training error rate (U-SVM) 0 

Average test error rate (SVM) 7.11% (0.92%) 

Average test error rate (U-SVM) 7.14% (0.92%) 

Ave. Number of Support Vectors (SVM) 195.60 

Typical C values 1 or 0.01 

Typical C* values 0.01 or 0.001 

Typical  values 0 

 

Performance results in Table I show average training and 

test errors for each method, where averages are calculated 

over 10 runs. The standard deviations of error rates are 

included in parenthesis. As expected, the U-SVM shows no 

improvement over standard linear SVM. Additional 

information in Table I show ‗typical‘ values of tuning 

parameters selected by the model selection procedure. Note 

small values of parameter C
*
 suggesting that Universum 

samples have little effect on the final model. Even though 

Table I includes the typical value of ε, the effectiveness of 

Universum samples is mainly determined by the values of C 
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and C* (or their ratio). Later in the paper we show only typical 

values of parameters C and C*. 

III. EFFECTIVENESS OF RANDOM AVERAGING UNIVERSUM 

 

Comparisons for the WinMac data set suggest that it may be 

possible to judge the effectiveness of RA Universum by 

analyzing the histograms of projections of training samples 

onto the normal direction vector w of standard SVM model. 

In fact, for sparse high-dimensional training data, we can have 

3 distinct types of projections: 

 Case 1: univariate projections of the training data onto 

the normal direction vector of standard SVM model 

cluster strongly on margin borders (as in Fig. 4). 

 Case 2: univariate projections of the training data onto 

the normal direction vector of standard SVM model 

cluster inside margin borders, as shown in Fig. 5a. 

 Case 3: univariate projections of the training data onto 

the normal direction vector of standard SVM model 

cluster outside margin borders, as shown in Fig. 5b. 

From the nature of the U-SVM optimization formulation 

(1), it can be expected that RA Universum would not be 

effective for Case 1, because Universum samples will be 

narrowly distributed near SVM decision boundary, as shown 

in Fig. 4b. (However, other types of Universum, with a wider 

distribution, may be effective). For Case 2, the labeled 

training data cannot be separated with large margin, so the 

original motivation for Universum learning (to stabilize 

selection of a large-margin hyperplane) does not apply. So in 

this case, the Universum should not provide any improvement. 

However, U-SVM is expected to provide an improvement in 

Case 3, where random averaging would produce Universum 

samples widely distributed around SVM decision boundary in 

the projection space, and even possibly outside the margin 

borders of standard SVM. Note that histograms in Figs. 4-5 

assume that the training data is linearly separable, which 

usually holds true for high-dimensional data. For lower-

dimensional data, the separability can be often achieved using 

nonlinear kernels.  

In summary, the RA Universum is expected to be effective 

if the training data is well-separable (in some optimally chosen 

kernel space). The same condition is also implemented by a 

standard SVM classifier, which seeks a decision boundary 

with high separability between the two classes. So the 

univariate histograms of projections for the standard SVM 

classifier, optimally tuned for a given data set, can be used to 

‗predict‘ the usefulness of the RA Universum. 

The univariate histograms of projections of training data for 

nonlinear kernels are calculated using the dual representation 

of the SVM decision function

1

( ) ( , )
n

i i i

i

f y K bx x x . 

That is, the projection of a training sample kx onto the normal 

direction of nonlinear SVM decision boundary equals

1

( ) ( , )
n

k i i i k

i

f y K bx x x . The predicted class label for 

sample kx is the sign of ( )kf x . All SVM software packages 

supply both the label values and real values of the decision 

function.  

In practice, the condition of good separability holds only 

approximately, and some labeled samples may fall inside the 

margin borders (denoted as -1 or +1 in the projection space). 

This can be stated as the requirement that the fraction of 

training samples that project inside the margin borders is 

small. So the condition for the effectiveness of RA Universum 

can be quantified via the following index: 

 

Separability Index ~ the fraction of (labeled) training data 

samples falling in the interval (-0.99, +0.99) in the univariate 

projection space. 

 

The smaller values of this index, say less than 5-6%, 

indicate high separability of the data, and will generally ensure 

improved generalization due to RA Universum. This condition 

for the effectiveness of U-SVM depends only on the properties 

of labeled training data, because this (RA) Universum is 

generated from labeled data. Other more general conditions 

will be presented later in Section V. 

Next we illustrate the proposed index for the synthetic 

Noisy Hyperbolas data set, where the underlying distributions 

for two classes are given by functions: x1 = ((t-0.4)*3)
2
+0.225 

and   x2 = 1-((t-0.6)*3)
2
-0.225.Here, [0.2,0.6]t  for class 

1 and [0.4,0.8]t for class 2.Gaussian noise is added to 

both x1 and x2 coordinates. The degree of data separation is 

controlled by noise level. Two values of standard deviation of 

noise, 0.025 and 0.05, are used to represent low and high noise 

levels. Examples of 100 training samples for both noise levels 

are shown in Fig. 6. 

For this data set, we apply a standard nonlinear RBF SVM 

and U-SVM using the following experimental protocol: 

 100 training samples (50 samples per class); 

 100 independent samples for validation, where 

validation data set is used for tuning parameters 

of SVM and U-SVM; 

 1,000 Universum samples generated from 

training data via random averaging; 

 2,000 independent test samples (used to estimate 

test error for each method). 

The RBF kernel has the form
2

( , ') exp 'K x x x x , where possible values of 

parameter  are taken as [2
-8

, 2
-6

…, 2
4
] during model 

selection. Each experiment is repeated 10 times using different 

random realizations of training, validation and test data, and 

the performance indices (test errors) are averaged over 10 

runs. The empirical results are shown in Table II. Note that the 

low value of separability index correlates well with improved 

performance of the U-SVM relative to standard SVM. The 

histograms of projections for low and high noise levels in Fig. 
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7 further illustrate the separability of the training data. 

 
TABLE II  

RELATIVE PERFORMANCE OF U-SVM ON THE HYPERBOLAS DATA SET FOR 100 

TRAINING SAMPLES. 

Noise level σ = 0.025 σ = 0.05 

Average test error 

(SVM) 

0.69% (0.39%) 5.00% (0.71%) 

Average test error (U-

SVM) 

0.39% (0.17%) 5.10% (1.29%) 

Average index value 6.60% (5.40%) 10.60% (4.50%) 

Typical C value 100 or 1000 100 or 10 

Typical C* value 1 or 10 1 or 100 

 

These empirical results suggest that:  

 the Hyperbolas data set, under low noise, is well-

separable (corresponding to Case 3 as discussed 

in the beginning of this section); 

 the Hyperbolas data set, under high noise, is not 

well-separable.  

So for the low noise setting we can expect an improvement 

due to RA Universum, as confirmed by a lower test error in 

Table II. For high noise data, the separability index is larger 

and the U-SVM does not yield any improvement over standard 

SVM. This example also shows that the shape of the 

histogram of projections depends on the properties of the data, 

such as the noise level and sample size. Hence, the 

effectiveness of RA Universum is very much data-dependent. 

In particular, introducing Universum can be effective only if 

the labeled data is well-separable (using standard SVM).  

IV. EMPIRICAL RESULTS FOR RA UNIVERSUM 

 

This section presents additional empirical comparisons 

illustrating the effectiveness of RA Universum using the 

‗histogram of projections‘ method. We also illustrate the same 

approach to other types of Universa. It is important to keep in 

mind that high-dimensional data is very diverse, so three 

‗distinct types‘ of histograms (identified as Case 1, 2 and 3 in 

Section III) may only serve as approximations of real-life data. 

Empirical comparisons in this section use three high-

dimensional data sets: 

 Synthetic 1000-dimensional hypercube data set, where 

each input is uniformly distributed in [0, 1] interval and 

only 200 out of 1000 dimensions are relevant for 

classification. An output class label is generated as y = 

sign(x1+x2+…+x200 – 100). For this data set, only linear 

SVM is used because the optimal decision boundary is 

known to be linear. The training set size is 1,000, 

validation set size is 1,000, and test set size is 5,000. 

For U-SVM, 1,000 Universum samples are generated 

via random averaging. 

 Real-life MNIST handwritten digit data set, where data 

samples represent the handwritten digits 5 and 8. Each 

sample is represented as a real-valued vector of size 

28*28=784. On average, approximately 22% of the 

input features are non-zero which makes this data very 

sparse. The training set size is 1,000, validation set size 

is 1,000, and test set size is 1,866 samples. For U-

SVM, 1,000 Universum samples are generated via 

random averaging.  

 Real-life ABCDETC data set, where data samples 

represent the handwritten lower case letters ‗a‘ and ‗b‘. 

Each sample is represented as a real-valued vector of 

size 100*100=10000. The training set size is 150 (75 

per class), validation set size is 150 (75 per class). The 

remaining 209 samples are used as test samples (105 

from class ‗a‘ and 104 from class ‗b‘). For U-SVM, 

1,500 Universum samples are generated via random 

averaging.  

For each data set, a classifier is estimated using the training 

data, its model complexity is optimally tuned using validation 

data, and finally the test error is estimated using test data. The 

results of such an experiment depend on a random realization 

of training and validation data. So each experiment is repeated 

10 times, using different random realizations, and the average 

test error rates are reported for comparison. Linear SVM 

parameterization is used for the synthetic data set, and both 

linear SVM and nonlinear RBF SVM are used for the MNIST 

data set. For the ABCDETC data set, a polynomial kernel (of 

optimal degree 3) is used in all experiments, following [11]. 

Also, the following range of parameters is used during model 

selection: C~[10
-11

,10
-9

,10
-7

,10
-5

,10
-3

,10
-1

,1,100], C/C*~[10
-4

 

,3x10
-4

,10
-3

,3x10
-3

,10
-2

, 3x10
-2

,10
-1

,3x10
-1

,1,3] and ε= [0, 0.02, 

0.05, 0.1, 0.2, 0.3, 0.4].  Generalization performance of 

standard SVM and U-SVM is shown in Table III, where the 

standard deviation of the estimated average test error is 

indicated in parentheses. 
TABLE III 

TEST ERROR RATES FOR MNIST, ABCDETC AND SYNTHETIC DATA SETS.  

 SVM U-SVM(RA) 

Synthetic data (Linear) 26.63% (1.54%) 26.89% (1.55%) 

MNIST(Linear) 4.58 %( 0.34%) 4.62%(0.37%) 

MNIST (RBF Kernel) 1.37% (0.22%) 1.20% (0.19%) 

ABCDETC (Poly) 20.48 %( 2.60%) 18.85 %( 2.81%) 

 

Comparison results indicate that U-SVM yields an 

improvement over standard SVM for MNIST digits (when 

using RBF kernel) and for the ABCDETC data. These results 

can be explained by examining the histograms of projections.  

Fig. 8a shows the histogram of projections of training data 

onto the normal direction of the RBF SVM decision boundary 

for the MNIST data, suggesting that this data is well-

separable. Similarly, Fig. 8b shows the histogram of 

projections onto the normal direction of the Polynomial SVM 

decision boundary for the ABCDETC data, suggesting that 

this data is also well-separable. On the other hand, the 

histogram of projections for linear SVM in Fig. 9 for both 

synthetic and MNIST data indicate that the training data is not 

well-separable, so the RA Universum should not yield any 

improvement. For MNIST data with RBF SVM, an average 

value of separability index is ~ 1.55%, and for MNIST data 

with linear SVM, the value of separability index is ~15%. 

We further investigate the effectiveness of other types of 

Universum for MNIST data. In this experiment, the training 
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set size is varied as 100, 200 and 1000; and validation set size 

is always taken to be the same as training set. For Universum 

data, 125 samples are randomly selected from each of the 

digits other than 5 or 8. So the total of 1000 Universum 

samples are used. The ‗Other Digits‘ Universum has been 

used in many previous studies on U-SVM [11,13,14].  Table 

IV presents comparison results for this ‗Other Digits‘ 

Universum. It shows that using ‗Other Digits‘ Universum 

yields an improvement over standard SVM. Also, these results 

suggest that ‗Other Digits‘ Universum is better than RA 

Universum, as evident from comparing the performance (for 

1,000 training samples) with results reported earlier in Table 

III. 
TABLE IV 

TEST ERROR RATES AND TYPICAL PARAMETER VALUES OF ‗OTHER DIGITS‘ 

UNIVERSUM SVM 

Training set size 100 200 1000 

SVM (RBF Kernel) 5.66% 

(1.89%) 

3.69% 

(0.66%) 

1.51% 

(0.20%) 

U-SVM using ‗Other 

Digits‘ Universum 

4.86% 

(2.08%) 

3.03% 

(0.67%) 

1.09% 

(0.26%) 

Typical C values 

selected for SVM 

10 or 1 or 

0.01 

1 10 or 1 

Typical C* values 

selected for U-SVM 

0.1 or 0.01 0.1 3 or 0.3 

 

In addition, two types of Universum, Random Averaging 

and Other Digits, are compared for low-sample size (100 

training samples) in Fig. 10, showing the histograms of 

projections. As evident from Fig. 10a, the RA Universum is 

less effective because its projections are narrowly clustered 

near the SVM decision boundary. On the other hand, 

projections of the Other Digits Universum are distributed 

more uniformly between margin borders, suggesting its 

effectiveness.  

V. CONDITIONS FOR EFFECTIVENESS OF THE UNIVERSUM     

Even though our discussion in Sections II-IV focused on the 

RA Universum, the methodology of analyzing univariate 

histograms of projections can be extended to other types of 

Universa as well. That is, first we train a standard SVM 

classifier using labeled data, and analyze its histogram of 

projections. Then a Universum data set will be effective if its 

histogram of projections satisfies two conditions: 
 

(C1) It is symmetric relative to the (standard) SVM 

decision boundary, and  

(C2) It has wide distribution between margin borders 

denoted as points -1/+1 in the projection space. 

 

These two conditions are satisfied, for example, for ‗Other 

Digits‘ Universum, as shown in Fig. 10b. We emphasize that 

conditions for the effectiveness of Universa depend on the 

properties of labeled data. In other words, a Universum can be 

evaluated only in the context of particular (labeled) training 

data. Condition (C1) can be related to the analysis performed 

in [14] suggesting that effectiveness of U-SVM depends on 

the difference between the means of the labeled training 

samples and of the Universum samples. Namely, this 

difference will be small for a symmetric histogram. Condition 

(C2) directly relates statistical properties of a Universum to 

the properties of labeled training data. This condition has not 

been specified in the prior research.  

Note that conditions (C1)-(C2) are more general than earlier 

conditions for the RA Universum. This is because the RA 

Universum is completely specified by the labeled training 

data, so its conditions can be formulated in terms of the 

properties of this data (i.e., the separability index introduced in 

Section III).  

Real-life high-dimensional data is usually well-separable by 

a standard SVM classifier, and this data may yield three 

‗typical‘ histograms of projections identified as Case 1, 2 and 

3 in Section III.  

This section presents several examples of ‗good‘ and ‗bad‘ 

Universum selections that illustrate conditions (C1) and (C2). 

The following is the general strategy used for analyzing the 

effectiveness of a Universum: 

 
ALGORITHM 1: STRATEGY FOR ANALYZING THE EFFECTIVENESS OF A 

UNIVERSUM. 

a) estimate standard SVM classifier for labeled training 

data; 

 

b) generate low-dimensional representation of training 

data by projecting it onto the normal direction vector 

of the SVM decision boundary estimated in (a). The 

resulting histogram of projections can be used to 

analyze separability of the training data; 

 

c) project the Universum data onto the normal direction 

vector of SVM hyperplane, and analyze projected 

Universum data in relation to projected training data. 

Specifically, the Universum is expected to yield an 

improvement (over standard SVM) only if both 

conditions (C1)-(C2) are satisfied. 

The first set of experiments involves classification of 

handwritten digits ‗5‘ and ‗8‘ using the MNIST data. The goal 

is to investigate the effectiveness of three types of Universa: 

handwritten digits 1, 3 and 6, and to explain their effectiveness 

by analyzing histograms of projections of both labeled and 

Universum data sets. For this experiment: 

 Training/validation set samples size is 100 (50 

per class); 

 Universum set sample size is 1,000; 

 Test set sample size is 1,866. 

Model selection for standard RBF SVM classifier and for 

U-SVM is performed using the validation data set. Each 

experiment is repeated 10 times with different random 

realizations of training/validation/Universum samples, and the 

average test error (and its standard deviation) is reported. The 

test error rates of SVM and U-SVM are shown in Table V, and 

the typical histograms of projections for training data and 

Universum data are shown in Fig. 11. 
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TABLE V  

TEST ERROR RATES FOR MNIST DATA WITH DIFFERENT UNIVERSA. TRAINING 

SET SIZE IS 100 SAMPLES. 

 SVM U-SVM 

(digit 1) 

U-SVM 

(digit 3) 

U-SVM 

(digit 6) 

Test 

error 

4.78% 

(0.79%) 

4.69% 

(0.70%) 

4.54% 

(0.58%) 

4.41% 

(0.69%) 

 

Typical histograms of projections shown in Fig. 11 suggest 

that digit 1 Universum is less effective than digit 3 or 6 

because it has more biased distribution between projections of 

labeled data, i.e., digits 5 and 8. The Universum samples for 

digits 3 and 6 are more widely and symmetrically distributed 

inside the margin borders, so they are expected to provide 

better performance (than digit 1 Universum). These findings 

are consistent with the empirical results in Table V, showing 

no statistically meaningful improvement for digit 1 

Universum, and a small improvement for digits 3 and 6. 

The next set of results also involves classification of 

handwritten digits ‗5‘ and ‗8‘ using MNIST data. The setting 

is identical to the first experiment, except that now 1,000 

training/validation samples are used (500 per class). The test 

error rates of SVM and U-SVM are shown in Table VI, and 

typical histograms of projections for training data and 

Universum data are shown in Fig. 12. 
TABLE VI 

TEST ERROR RATES FOR MNIST DATA WITH DIFFERENT UNIVERSA. TRAINING 

SET SIZE IS 1,000 SAMPLES. 

 SVM U-SVM 

(digit 1) 

U-SVM 

(digit 3) 

U-SVM 

(digit 6) 

Test 

error 

1.47% 

(0.32%) 

1.31% 

(0.31%) 

1.01% 

(0.28%) 

1.12% 

(0.27%) 

 

Analysis of the histograms in Fig. 12 confirms an earlier 

finding that digit 1 is not a good choice for the Universum, 

because its projections are more biased towards the 

distribution of digit 8. This can be intuitively expected, by 

noting the similarity between the first principal component of 

digits 1 and 8. Further, histograms shown in Fig. 12b and Fig. 

12c satisfy conditions (C1)-(C2) for the effectiveness of 

Universum.  Hence, we can expect both digits 3 and 6 

Universa to yield an improved prediction accuracy over 

standard SVM, which is confirmed by the empirical results in 

Table VI. As evident from these experiments, the 

effectiveness of a Universum is always related to a particular 

training data set. For instance, digits 3 and 6 Universa are very 

effective for training sample of size 1,000, but are less 

effective for training sample of size 100. 

The second experiment also involves the classification of 

handwritten digits ‗5‘ and ‗8‘ using MNIST data. However, 

the goal now is to show how the poor performance of ‗bad‘ 

Universum can be predicted using the proposed methodology. 

We use the same experimental set-up with 1,000 

training/validation labeled samples, but also include artificial 

Universum samples formed as follows:-  Each component 

(pixel) of a 28x28=784 –dimensional sample follows a 

binomial distribution with probability p(x=1) = 0.1395. This 

probability value 0.1395 is selected such that the average 

intensity of Universum samples is the same as that of the 

training data (averaged for both digit 5 and 8). Fig. 13 shows 

an example of such a Universum sample. 

Experimental results comparing the test error rates for 

standard RBF SVM classifier and U-SVM using 1,000 

Universum samples are shown in Table VII. Typical 

histograms of projections for training and Universum data are 

shown in Fig. 14. As expected, this ‗bad‘ Universum does not 

yield any meaningful improvement (over standard SVM), and 

this can be anticipated by analyzing the histogram of 

projections in Fig. 14. Note that the histogram for the 

Universum data in Fig. 14 does not satisfy either condition 

(i.e., symmetric and wide distribution). 
TABLE VII 

TEST ERROR RATES FOR BINOMIALLY DISTRIBUTED UNIVERSUM. 

 SVM U-SVM (noise) 

Test error 1.56% (0.27%) 1.55% (0.25%) 

 

The third set of experiments involves classification of 

handwritten characters ‗a‘ and ‗b‘ using the ABCDETC data. 

The goal is to investigate the effectiveness of three types of 

Universa: ‗All upper case letters from A to Z‘, ‗All digits from 

0 to 9‘ and ‗Random Averaging‘ of training data. 

For this experiment: 

 Training/validation set samples size is 150 (75 

per class); 

 Universum set sample size is 1,500; 

 Test set sample size is 209, i.e., 105 samples 

from class ‗a‘ and 104 from class ‗b‘. 

For this data set, we use a 3
rd

 degree Polynomial Kernel. 

Model selection for the standard Polynomial SVM classifier 

and for U-SVM is performed using the validation data set. 

Each experiment is repeated 10 times with different random 

realizations of training/validation/Universum samples, and the 

average test error (and its standard deviation) is reported. The 

test error rates of SVM and U-SVM are shown in Table VIII, 

and typical histograms of projections for training and 

Universum data are shown in Fig. 15. 
TABLE VIII  

TEST ERROR RATES FOR ABCDETC DATA WITH DIFFERENT UNIVERSA. 

TRAINING SET SIZE IS 150 SAMPLES. 

 SVM U-SVM 

(upper case) 

U-SVM 

(all digits) 

U-SVM 

(RA) 

Test 

error 

20.47 % 

( 2.60%) 

18.42 %        

( 2.97%) 

18.37 %     

( 3.47%) 

18.85 %       

( 2.81%) 

 

The histograms in Fig. 15 show that for both the ‗Upper 

case letters A-Z‘ and ‗digits 0-9‘ the Universum samples have 

a wider distribution than the Universum samples obtained via 

Random Averaging. Hence, we can expect both ‗Upper case 

letters A-Z‘ and ‗digits 0-9‘ to be more effective than RA. 

This is confirmed by the empirical results in Table VIII. 

In summary, these results suggest that the Universum 

distribution should be wide enough, relative to the margin 

borders of standard SVM model estimated from labeled 

training data. The ‗good‘ Universum helps to stabilize SVM 

decision boundary, and makes it less sensitive to random 

variability of training samples.  
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VI. ANALYTIC INTERPRETATION 

 

This section establishes the connection between our 

practical conditions for the effectiveness of Universum 

learning and recent analytic results [14]. Sinz et al [14] 

analyzed the geometric relations of the decision hyperplane 

learnt with the U-SVM to the Universum data set, and showed 

that the optimal solutions tend to make the normal vector 

orthogonal to the principal directions of the Universum. That 

is, under optimization formulation (1), the U-SVM algorithm 

‗tries to find a direction 
*

w such that the variance of the 

projections of the Universum samples on that direction is 

small‘ [14]. As argued earlier in Section 1, this insight is not 

very practical, because it does not explicitly describe the 

properties of Universa in relation to the labeled training data. 

In fact, according to the U-SVM formulation (1) an optimal 

direction 
*

w tries to achieve two goals: 

1. Separate labeled samples with large margin (as in   

 standard SVM); 

2. Minimize the variance of Universum samples. 

Under high-dimensional settings, labeled training data tends 

to be separable (in some optimally chosen kernel space), so 

the first goal can be achieved by a standard SVM. This 

motivates a two-step strategy in Section 5 (shown in Section 

V), where the standard SVM is estimated first, and then the 

conditions for the effectiveness of a Universum (i.e., for goal 

2) are stated (in C1-C2). This incremental strategy also 

alleviates the problem of model selection, because parameters 

of standard SVM are tuned separately. 

Further, our conditions (C1)-(C2) for the effectiveness of a 

Universum implement the above cited analytic property that 

the optimal direction vector 
*

w minimizes the variance of the 

projections of Universum samples [14]. Namely, our 

conditions apply to projections of Universum samples onto the 

vector w of the standard SVM model. Condition (C1) ensures 

that the mean of projected Universum samples falls close to 

SVM decision boundary, or equivalently that the mean of 

Universum is (approximately) the same as the mean of 

training samples. This is clearly necessary for minimizing the 

variance of projections of Universum according to [14]. 

Condition (C2) ensures that Universum data can indeed 

provide an improvement relative to standard SVM. That is, if 

the Universum is narrowly distributed near SVM decision 

boundary, then the solution vector w of standard SVM would 

provide small variance of projections of the Universum, so 

that no additional improvement (due to this Universum) can be 

expected. 

For the least-squares U-SVM, closed-form analytic 

interpretation becomes possible. Sinz et al [14] showed an 

equivalency between the (least-squares) U-SVM learning and 

the maximization of a hybrid Rayleigh‘s coefficient due to the 

kernel oriented Principal Component Analysis (kPCA) and 

kernel Fisher discriminant analysis (kFDA): 

 

 

 

 

max
w

T

b

T T * * T

w

1

( ) * ( )( )
m

j j

j

C C

w S w

w S w w x μ x μ w

        (2) 

 

 

where, 

w ≡ The normal weight vector of decision hyper plane. 

μ  ≡The empirical mean of the training samples

1

1 n

i

in
μ x .  

1 2,μ μ ≡ The empirical class means given by, 
1

c i

i ccn
μ x  

    c=Class -1,+1. 

bS ≡ The between class scatter matrix; 
T

b 1 2 1 2( )( )S μ μ μ μ . 

wS ≡ The within class scatter matrix given by,       

   
T

w

1, 1

( )( )i c i c

c i c

S x μ x μ . 

*

jx ≡ The universum samples, where 1...j m . 

, * 0C C , control for the tradeoff between minimization of 

errors and maximization of the number of contradictions. 

 Our conditions (C1)-(C2) can be only approximately related 

to the analytic criterion (2), because we use original U-SVM 

formulation (with hinge loss). Under our approach, the 

effectiveness of the Universum is evaluated relative to 

standard SVM model estimated from labeled data (shown in 

Algorithm 1). This approach can be interpreted using the 

analytic formulation (2) as follows: 

- Minimize the term marked ‗from kPCA‘, since the 

other two terms in (2) correspond to the solution 

provided by standard SVM, and they are fixed. 

Then the universum samples contribute to the maximization of 

the hybrid Rayleigh‘s coefficient through the minimization of 

the term T * * T

1

( )( )
m

j j

j

w x μ x μ w . Further, this term can be 

rewritten as the sum of two terms:   

T * * T

1

( )( )
m

j j

j

w x μ x μ w  

T T T * * T

U U U U

1

[ ( )( ) ] [ ( )( ) ]
m

j j

j

mw μ μ μ μ w w x μ x μ w    (3) 

where 
*

U

1

1 m

j

jm
μ x  is the mean of universum samples. 

The first term in (3) is the squared distance (
2d ) between the 

means of the Universum samples and training samples 

projected onto the normal weight vector (w) of the standard 

SVM model. For high-dimensional data, most training 

samples cluster at/near the margins. So, for balanced data sets, 

the mean of the training samples is likely to be the standard 

SVM decision boundary. Hence, our condition (C1) is 

     from kPCA from kFDA 

      from kFDA 
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equivalent to the first term in (3), i.e. minimization of the 

projected distance ( d ) between the mean of the universum 

samples Uμ  and the mean of the training samplesμ . Because 

in the first term of (3), the distance between the means is very 

small, due to our condition (C1), maximization of the 

Rayleigh‘s coefficient (2) depends mainly on minimization of 

the second term, i.e. the variance of the universum samples 

projected onto the normal weight vector. Thus, for a case 

where we have a wide distribution (larger variance) of the 

universum samples projected onto the normal weight vector, 

as stated in our condition (C2); we may expect to maximize 

the Rayleigh‘s coefficient in (2) by minimizing this large 

variance. On the other hand, if this variance is small, we 

expect no or little improvement from the Universum.  

VII. SUMMARY 

This paper investigates the effectiveness of the U-SVM for 

finite-sample data. In general, performance of learning 

methods is always affected by the properties of application 

data at hand. New learning settings, such as U-SVM, are 

inherently more complex than standard SVM and they have 

more tuning parameters. So it is important to have practical 

criteria that ensure potential advantages of using U-SVM for a 

given data set. This is a difficult problem, because the 

effectiveness of U-SVM depends on the properties of labeled 

data as well as Universum samples. Meaningful analytic 

characterization of such data sets is quite difficult. So we 

propose a novel representation of training data using 

projections of this data onto the normal direction of SVM 

decision boundary. Analysis of the univariate histograms of 

projections, presented in this paper, leads to practical 

conditions for the effectiveness of Universum learning. That 

is, a Universum data set is effective, if its univariate histogram 

of projections is symmetric and widely distributed, relative to 

(standard) SVM decision boundary.  

Empirical results using several real-life and synthetic data 

sets illustrate the usefulness of the proposed approach, for 

several types of Universa, and several real-life and synthetic 

data sets. Proposed practical conditions are also shown to be 

closely related to analytic conditions independently derived in 

[14]. However, our conditions are more useful for 

practitioners than analytic criteria in [14], because our 

approach: 

- Provides an explicit characterization of the properties 

of the Universum and the properties of labeled 

training data. These properties are conveniently 

represented in the form of univariate histograms; 

- Directly relates prediction performance of U-SVM to 

that of standard SVM (using only labeled data);   

Further, the proposed approach significantly simplifies model 

selection for U-SVM. That is, the regularization parameter C
and the kernel parameter for the U-SVM formulation (1) are 

selected via training a standard SVM classifier (using only the 

labeled training data). Then model selection for U-SVM 

involves tuning only two remaining parameters, C*/C and . 

In conclusion, we point out that most studies of the U-SVM 

use balanced data sets with equal misclassification costs. That 

is, the number of positive and negative labeled samples is 

(approximately) the same, and the relative cost of false 

positive and false negative errors is assumed to be the same. 

This paper also assumes such a balanced setting, where false 

positive and false negative errors are assigned equal cost in the 

optimization formulation (1). Many practical applications 

involve unbalanced data and unequal costs. So there is a need 

for future research on the properties and conditions for the 

effectiveness of Universum under such unbalanced settings. 
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Fig. 1. Two large-margin separating hyperplanes explain training data 

equally well, but have different number of contradictions on the 

Universum. The model with a larger number of contradictions should be 

favored. 

 
Fig. 2. Generation of the Universum data by averaging.    

                
 

Fig. 3. Example of randomly chosen handwritten digits 5 and 8 and the 

corresponding Universum sample obtained by averaging. 

 
(a) 

 
(b) 

Fig. 4. Histogram of projections of the training data and the universum 

samples onto the normal direction vector of the SVM hyper plane. 

(a)Training samples of the two classes in red and blue.(b) Training 

samples of the two classes in red and blue and the universum samples in 

black. 

 

 
              (a)                         (b) 
 

Fig. 5. Typical histogram. (a) Case 2: training data is separable, and its projections cluster inside margin borders. (b) Case 3: training data is separable, and its 

projections cluster outside margin borders. 

 

-1.5 -1 -0.5 0 0.5 1 1.5
10

0

10
1

10
2

10
3

-1.5 -1 -0.5 0 0.5 1 1.5
10

0

10
1

10
2

10
3

-3 -2 -1 0 1 2 3 
0 

50 

100 

150 

200 

250 

-1.5 -1 -0.5 0 0.5 1 1.5 
0 

2 

4 

6 

8 

10 

12 

14 

16 

Average 

Class +1 

Class -1 

Hyper plane 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

12 

 
      (a)             (b) 

Fig. 6. Noisy Hyperbolas data sets. (a) Standard deviation of noise is 0.025 (b) 

Standard deviation of noise is 0.05. 

 

 
              (a)                         (b)  
Fig. 7. Histogram of projections of training data of Hyperbolas data set onto the normal direction of RBF SVM decision boundary. (a) Low Noise Hyperbolas 

data. (b) High Noise Hyperbolas data. 

   

       
               (a)                          (b) 

 

Fig. 8. (a). Histogram of projections of MNIST training data onto normal direction of RBF SVM decision boundary. Training set size ~ 1,000 samples. 

(b) Histogram of projections of ABCDETC training data onto normal direction of Polynomial SVM decision boundary. Training set size ~ 150 samples. 
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             (a)                        (b)  

Fig. 9. Histogram of projections onto normal direction of linear SVM. (a) MNIST data set. (b) synthetic data set. 

 

 

 

 

 

 
                  (a)                          (b)  

Fig. 10. The histogram of projections of Universum data onto normal direction of RBF SVM decision boundary. Training set size ~ 100 samples. (a)  Random 

Averaging Universum.(b) Other Digits Universum. 
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            (a) 

            (b) 

  
           (c)  
 

 

Fig. 11. Univariate histogram of projections for 3 different types of 
Universa. Training set size ~ 100 samples, Universum set size ~ 1,000 

samples. (a)  digit 1 Universum (b)digit 3 Universum. (c) digit 6 

Universum. 
 

   

 
(a) 

 
(b) 

 
(c) 

 
Fig. 12. Univariate histogram of projections for 3 different types of 

Universa. Training set size ~ 1,000 samples. Universum set size ~ 1,000 

samples. (a) digit 1 Universum. (b) digit 3 Universum. (c) digit 6 

Universum.
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Fig. 13. Universum sample via binomial noise distribution.  

 

 

 

 
Fig.  14. Histogram of projections for binomially distributed Universum. 

                  

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
    (a) 

 
    (b) 

 
     (c) 

Fig. 15. Univariate histogram of projections for 3 different types of 

Universa for ABCDETC data Training set size ~ 150 samples. 

Universum set size ~ 1,500 samples. (a) ‗Upper case letters A to Z‘ 

Universum. (b) ‗digits 0-9‘ Universum. (c) RA Universum.
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