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Abstract - Many applications in machine learning involve 

modeling sparse high dimensional data. Examples include 

application of predictive models in high dimensional micro-

array data, or in brain imaging studies using magnetic 

resonance imaging (MRI). A typical problem in such a 

setting is the understanding of the multivariate models 

estimated from the data, especially nonlinear high-

dimensional models such as Support Vector Machines 

(SVM). In this paper we present a simple graphical method 

for interpreting such high-dimensional models and illustrate 

its effectiveness for improved understanding of SVM models 

and for analyzing new learning setting called Universum 

SVM. 

Keywords: Interpretation of black box models, model 

selection, support vector machines, univariate histogram of 
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1 Introduction 

 Modeling sparse high dimensional data is common in 

machine learning applications, and, in particular, in 

biomedical applications. For example, in micro-array data or 

brain imaging studies using magnetic resonance imaging 

(MRI) where the dimension (d) of each samples is quite 

large in comparison to the number of samples (n). Such high-

dimensional settings pose new challenges for classification 

methods. Most learning methods developed in statistics, 

machine learning and data mining, such as decision trees, 

MARS, discriminant analysis, support vector machines, and 

AdaBoost, follow standard inductive learning problem 

setting [1-3].These techniques have been successfully used in 

many real-life applications [4]. Another approach to 

handling ill-posed high-dimensional classification problems 

is to adopt new non-standard learning formulations that 

incorporate a priori knowledge about application data and/or 

the goal of learning directly into the problem formulation 

(see [1], [5]). Examples include: 

  • Transduction. [5, 6] 

  • Inference through Contradictions. [5] 

  • Learning with Structured Data. [5] 

  • Multi-task Learning. ([7-9]). 
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These new learning settings reflect properties of real-life 

applications, and can result in improved generalization. 

However their acceptance by practitioners is hindered by 

their poor interpretation capability. Thus a simple graphical 

representation for such multivariate high-dimensional models 

is essential for their understanding and acceptance. 

Recent approaches aimed at improved understanding of 

SVM classifiers include a number of standard visualization 

and graphical techniques originally developed in statistics 

and later adapted for SVM interpretation [10-12]. These 

methods follow a traditional statistical approach of 

identifying a few 'important' low-dimensional projections, 

and this may place a heavy burden on a human modeler 

trying to examine large number of possible projections. In 

many cases these methods are limited to linear kernels ([10, 

11]) or put additional constraints upon the type of kernels 

used [12]. Further, these visualization methods are general-

purpose, and they do not utilize many critical aspects of 

SVM classifiers, such as the soft-margins. Much can be 

understood from the visualization of how the data is oriented 

w.r.t. the soft-margins. In this paper we present a very simple 

graphical method called the “univariate histogram of 

projections” which can be used for many SVM-based 

methods, and demonstrate its practical utility for several 

representative data sets. 

The paper is organized as follows. Section 2 provides a 

brief description of the univariate histogram of projections 

for both linear and non-linear SVM models. Section 3 

describes how the proposed method can be used for SVM 

models with unbalanced data and unequal misclassification 

costs. Section 4 describes the utility of univariate histogram 

of projections for analyzing new SVM-based methodology 

called Universum Learning, or Inference through 

Contradiction [5]. Finally, the summary is presented in 

Section 5. 

 

2 Univariate histogram of Projections 

Classification methods specify (nonlinear) decision 

boundary in the space of input variables. This decision 

boundary is estimated from available training data, but is 

intended for classifying future (or test) input samples. For 

high-dimensional data, understanding and interpretation of 

both the training data and the estimated decision boundary is 

challenging, because (a) human intuition fails for such 

settings, and (b) high-dimensional sparse data sets have 

properties that are very different from low-dimensional 

settings [1].So we propose simple graphical representation of 



the training data and SVM decision boundary (estimated 

from this data) via the “univariate histogram of projections”. 

 

Univariate Histogram of Projections ~ is the histogram of 

the projection values of the data samples onto the normal 

direction (weight vector) of the SVM decision boundary. 

 

Such a histogram is obtained via the following three steps:-  

a. Estimate standard SVM classifier for a given (labeled) 

training data set. Note that this step includes optimal 

model selection, i.e. tuning of SVM parameters 

(regularization parameter, kernel); (see Fig 1a). 

b. Generate low-dimensional representation of training 

data by projecting it onto the normal direction vector 

of the SVM hyperplane estimated in (a); (see Fig 1b). 

c. Generate the histogram of the projected values 

obtained in (b). (see Fig 1c). 
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(a) The estimated SVM model and training data. 

W0

-1

+1

 
(b) Projection of the training data onto the normal weight vector (w) of the 

SVM hyperplane. 
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(c) Univariate histogram of Projections. i.e. histogram of  ( )f x values. 

 

Fig 1. Illustration of the steps to generate the univariate histogram of 

projections. 

It may be noted that the idea of projecting the data onto 

the normal direction given by w, is very similar to Fisher's 

Linear Discriminant Analysis, except that in this case the 

decision boundary is derived via nonlinear SVM. In Fig. 1c, 

SVM decision boundary is marked as zero, and the margin 

borders for positive/negative classes are marked, 

respectively, as +1/-1. Visual analysis of this univariate 

histogram of projections can be helpful for understanding 

high-dimensional data. For example, consider linear decision 

boundary for the synthetic Noisy Hyperbolas data set in Fig 

2a. The projected values shown graphically in Fig. 2b are 

calculated analytically using linear SVM model as shown in 

Fig 2a and then the histogram of the projection of training 

samples onto the normal weight vector (w) are generated as 

shown in Fig 2b.  The projected values for the two classes 

overlap, and this is consistent with the fact that the training 

samples are not linearly separable as seen from Fig 2a. 
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(a) Decision boundary for linear SVM model. 

  ( ( )) ( )y sign f sign bx w x
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Univariate Histogram of projections for training samples kx onto 

the normal vector of linear SVM decision boundary. 

( ) ( )k kf bx x w  

 

Fig 2. Example of the univariate histogram of projections for linear 

SVM. 
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For non-linear SVM kernels, the projected values 

( )f x are calculated by using the kernel representation in the 

dual space. In this case, the projection of training 

sample kx onto the normal direction of the nonlinear SVM 

decision boundary is expressed 

as ( ) ( , )k i i i ki
f y K bx x x . For example, consider 

nonlinear decision boundary for the synthetic Noisy 

Hyperbolas data set in Fig 3a. Using nonlinear RBF kernel 

of the form 
2

( , ') exp 'K x x x x with optimally 

tuned parameters yields SVM decision boundary shown in 

Fig 3a, and the corresponding histogram of projections in Fig 

3b.  
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(a) Decision boundary for non-linear SVM model. 

    ( ( )) ( ( , ) )i i ii
y sign f sign y K bx x x  

 

 

 

 

 

 

 

 

 

 

 

 

(b) Histogram of projections for training samples kx onto the normal 

vector of non-linear SVM decision boundary. 

 

Fig.3.Example of the univariate histogram of projections for non linear 

RBF SVM. 

 

Fig 3b clearly shows that the training samples are well 

separable using nonlinear decision boundary shown in Fig. 

3a.  In this case, the histogram does not add much to 

understanding, because separability of this two-dimensional 

data is evident from Fig. 3a. However, visual representation 

of high-dimensional data in the original input space, similar 

to Fig. 3a, is impossible, so the histogram representation 

becomes very useful. 

To illustrate this point, consider the sparse high 

dimensional MNIST handwritten digit data set [13], where 

training data samples represent handwritten digits 5 and 8, 

and the goal is to estimate binary classifier for discriminating 

these two digits. Each sample is represented as a real-valued 

vector of size 28*28=784. On average, 22% of the input 

features are non-zero which makes this data also sparse. For 

this example we use the following setting:- 

- No. of training samples= 1000. (500 per class) 

- No. of validation samples =1000. (This independent 

validation set is used for Model selection). 

- No. of Test samples = 1866. 

- Dimension of each sample= 784 (28*28). 

- Range of parameters for RBF SVM model selection. 

C~[0.01, 0.1, 1, 10, 100, 100], and γ~ [2
-8

, 2
-6

… 2
2
, 2

4
]. 

 

For this data set, the univariate histogram of projection for 

the training samples as shown in Fig 4a. From Fig 4a we 

observe that the training samples are well separable in this 

optimally chosen RBF kernel space. This is typically the case 

for high dimension low sample size (HDLSS) setting, where 

the training samples are generally well separable in some 

optimally chosen kernel space. Of course, this property holds 

only for the training samples. The separability of the training 

samples does not imply separability for the test samples. This 

is illustrated in Fig 4b where the projections of test samples 

are not well separable. 

 
 

 

 

 

 

 

 

 

 

 

 

 

(a)Histogram of projections of MNIST training data onto normal 

direction of RBF SVM decision boundary. Training set size ~ 1,000 

samples. 

 

 

 

 

 

 

 

 

 

 

 
(b) Histogram of projections of MNIST test data onto normal direction 

of RBF SVM decision boundary. Test set size ~ 1866 samples.  

Fig.4. Univariate Histogram of projections for training/test samples for 

MNIST handwritten digits data set. 
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3 Histograms of projections for 

unbalanced data 

 Many practical applications use unbalanced data and 

different misclassification costs. This is common in most 

biomedical applications, fraud detection etc. Here 

„unbalanced data‟ refers to the fact that the number of 

positive samples is much smaller than negative ones. Also, 

for such data sets, the cost of false negative errors 
fnC  is 

typically set higher than that of false positives
fpC . In this 

case, the ratio of misclassification costs is specified based on 

application-domain requirements [1]. 

In such a setting the quality of a classifier is estimated by 

its weighted classification error for test samples, with 

weights given by the misclassification costs, i.e.  

       _ _ fp fp fn fnweighted test error C P C P          (1) 

where 
fpP  and 

fnP denote the probability of false positives 

and false negatives in the test set respectively [1]. In this 

case, the univariate histogram of projection can be quite 

helpful for interpreting the SVM models. Further such a 

simple graphical representation can also help the non expert 

SVM users (viz. clinicians and biomedical researchers) to 

interpret the black-box predictive SVM models, which in 

turn could make them acceptable in the medical research 

community. 

 As an example we consider a recent study of SVM 

predictive modeling of Transplant-Related Mortality (TRM) 

for Blood-and-Marrow Transplant patients [14]. In this 

study, the goal of modeling was to predict patient‟s survival 

(alive or dead) one year post-transplant. The data has records 

of 301 patients from a clinical study performed at the 

University of Minnesota. This data set has 221 samples 

labeled „alive‟ and 75 samples labeled „dead‟, i.e. the ratio of 

alive-to-dead samples is 3:1. Further, ratio of 

misclassification costs used in the study was 1:4 or 1:3. The 

prediction accuracy of classifier is measured using the 

weighted test error (1). 

 

 

 

 

 

 

 

 

 

Here we reproduce (in Fig. 5) the univariate histogram of 

projections for 14-dimensional SVM model for predicting 

TRM [14]. This figure illustrates unbalanced class 

distributions, and the effect of unequal misclassification 

costs on the performance of SVM classifier. In particular, as 

shown in Fig. 5, the error rate of patients classified as 

negative (Alive) is small (~7%), whereas the error rate of 

patients classified as positive (Dead) is large (~47%). Such a 

dichotomy is common for many practical problems with 

unbalanced data sets. Thus the proposed technique of 

univariate projections can also enable improved 

understanding of the bias of the SVM models for unbalanced 

data with unequal costs. 

 

4 Conditions for effectiveness of 

Universum Learning 

Sparse high-dimensional setting poses new challenges for 

classification methods. To this end we have seen the 

emergence of several non-standard learning formulations. 

One such learning method is „inference through 

contradictions‟ or Universum learning [5, 6]. This idea was 

mainly introduced to incorporate a priori knowledge about 

admissible data samples into the learning process. These 

additional unlabeled data samples (called virtual examples or 

the Universum) are used along with labeled training samples, 

to perform an inductive inference. Note that the Universum 

samples are not real training samples; however they reflect a 

priori knowledge about application domain. For example, if 

the goal of learning is to discriminate between handwritten 

digits 5 and 8, one can introduce additional „knowledge‟ in 

the form of other handwritten digits 0, 1, 2, 3, 4, 6, 7, 9. 

These examples from the Universum contain certain 

information about handwritten digits, but they cannot be 

assigned to any of the two classes (5 or 8). Detailed 

mathematical formulation of Universum learning, aka 

Universum SVM (U-SVM), can be found in [1,5,6]. 

Universum SVM formulation can be viewed as a 

generalization of standard SVM classification formulation. 

U-SVM setting is more complex, as it has more tunable 

parameters than standard SVM. So an important practical 

question is to formulate the conditions that enable improved 

prediction performance of U-SVM vs. standard SVM. 

Recent papers [15] and [16] report such simple conditions 

for the effectiveness of Universum Learning for HDLSS 

setting. These conditions are based on analysis of the 

univariate histogram of projections. That is, the histogram of 

projections is generated first for standard SVM classifier, 

and then the shape of this histogram along with the 

distribution of projections of the Universum samples, is used 

to determine the effectiveness of the Universum for a given 

training set.  

This technique is illustrated next using the same MNIST 

handwritten digit data set, where data samples represent 

handwritten digits 5 and 8, using RBF SVM. In this case, we 

    TP = 62      FP = 56         P_error_rate = FP/(TP+FP)=0.47 

FN = 13     TN = 170      N_error_rate = FN/(TN+FN)=0.07 

Fig. 5. Univariate histogram of projections for high-dimensional data. 

Negative samples (~ Alive) are shown in gray, positive (~Dead) in 

black. False positives and false negative errors are indicated as gray-

shaded and black-shaded areas, respectively 
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consider three different Universum data sets, i.e., 

handwritten digits 1, 3 and 6, and the problem is to evaluate 

relative effectiveness of these different types of Universa. 

 Cherkassky et al. [16] provide the following conditions 

for the effectiveness of a given Universum set for a particular 

labeled training set. That is, a Universum set is effective if its 

histogram of projections satisfies two conditions: 

1. It has symmetric distribution relative to (standard) 

SVM decision boundary; 

2. It has wide distribution between margin borders 

denoted as +1/-1 in the projected space.  

Fig. 6 shows histograms of projections for 3 different 

types of Universa. Projections of labeled training data 

samples are shown in gray and black colors, and projections 

of Universum samples are shown in dashed-black.  

Histograms in Fig 6b and 6c seem to satisfy the conditions 

(1) and (2) better than in Fig. 6a.  Thus digit 1 universum 

samples are not likely to provide significant improvement. 

Empirical comparison of the test error rate (shown in Table 

I) provided by standard SVM and U-SVM confirms this 

analysis. 

 
TABLE I 

TEST ERROR RATES FOR MNIST DATA WITH DIFFERENT UNIVERSA. 

TRAINING SET SIZE IS 1,000 SAMPLES. STANDARD DEVIATION OF REPORTED 

ERROR RATES IS GIVEN IN PARENTHESES 

 

 SVM U-SVM 

(digit 1) 

U-SVM 

(digit 3) 

U-SVM 

(digit 6) 

Test 

error 

1.47% 

(0.32%) 

1.31% 

(0.31%) 

1.01% 

(0.28%) 

1.12% 

(0.27%) 

 

 

 

 

 

 

 

 

 

 

 
Fig 6a. Projections for digit 1 Universum 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6b. Projections for digit 3 Universum 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6c. Projections for digit 6 Universum 

Fig. 6 shows histograms of projections for 3 different types of Universa. 

 

5  Summary 

This paper presents a simple method for interpretation of 

high dimensional nonlinear SVM models in the form of 

univariate histogram of projections. This simple graphical 

technique can be used to understand the multivariate SVM 

models estimated from data under different standard and 

non-standard learning settings, including unbalanced data 

sets with unequal misclassification costs. This representation 

can also be used to explain the practical conditions for the 

effectiveness of new learning settings such as Universum 

SVM. Finally, such a simple graphical representation can be 

of immense help to practitioners and help them to have a 

better understanding of the SVM model. 
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