
EE 8591: DEVELOPMENT AND EVALUATION OF LEARNING
SOFTWARES

REPORT PREPARED BY

SAUPTIK DHAR
email: dharx007@umn.edu

Ph No: - (612)876-6429

GUIDED BY

PROFESSOR VLADIMIR CHERKASSKY
DEPARTMENT OF ECE

UNIVERSITY OF MINNESOTA

2

ACKNOWLEDGEMENTS

The culmination of the project to the present state is not just the single handed effort by the
Author. The author would like to thank all who participated to bring the project to its present
state. However the author would like to sincerely express his gratitude towards:

 Professor Vladimir Cherkassky: For guiding through the entire stages of the project.
Moreover, the complete understanding of the regression interface would have been
vacant without the guidance of Professor Cherkassky.

 Dr Ridder and Dr. David M.J Tax: For their guidance on the usage of the PRTools.

 Dr. Yunqian Ma: For his guidance and comments on the Project document.

 Predictive Learning Research Group: For helping in the implementation of the different
new interfaces and highlighting the usage of some packages.

 Students of EE 8591 and Ms. Amisha Patel: For their useful comments on the XTAL
package.

3

CONTENTS

1. INTRODUCTION
 MOTIVATION……………………………………………………………….... 4

 PERFORMANCE METRICS…………………………………………………. 4

 PACKAGE UTILITY…………………………………………………………. 4

 ORGANIZATION OF THE REPORT………………………………………... 4

2. SECTION 1 (COURSE WEBSITE)

1.1 CLUSTERING AND DIMENSIONALITY REDUCTION
Generalized Llyod’ Algorithm………………………………………………………………… 5
Self Organizing Maps…………………………………………………………………………... 8

1.2 CLASSIFICATION
K Nearest Neighbor Classifiers………………………………………………………. 13
Fischer’s Linear Discriminant Classifier……………………………………………. 17
Quadratic Decision Boundary………………………………………………………… 20
Support Vector Classifier……………………………………………………………… 28
Constrained Topological Mapping……………………………………………………. 34
Decision Trees……………………………………………………………………………. 38

1.3 REGRESSION
Non Adaptive Methods…………………………………………………………………. 46
Adaptive Methods(XTAL)…………………………………………………………….. 52

3. SECTION 2 (OTHER SOFTWARES)
PRTOOL……………………………………………………………………… 63

WEKA(3.5.8)……………………………………………………………. .64

SPIDER…………………………………………………………………... 68

4. SOME RECOMMENDATIONS……………………………………………….. 70

5. CONCLUSION………………………………………………………………….. 70

6. FUTURE SCOPE……………………………………………………………….. 70

4

INTRODUCTION

MOTIVATION
The main motivation behind the project is to provide a comparison between the available soft
wares and to develop some useful interfaces for the usability of the existing packages. However
in view of the huge repository of the available soft wares we limit ourselves mainly to the
Software packages in the course website and some popular Machine learning software viz,
WEKA, PRTools etc. We further try to provide some recommendations for the usage of software
packages based on their usage.

PERFORMANCE METRICS
We analyze the different software mainly on the basis of the following Performance Metric:

1. User Interface of the Software package.
2. Parameter Tuning.
3. Output Parameters
4. Inherent Algorithm used.(a reference)
5. Help Documents.(a reference)

Note: Some of the packages used here are still not available publicly. Moreover some of the
packages used are the unlicensed version of the original package. This is likely to produce a bias
in the generated results.

PACKAGE UTILITY
We identify a basic package utility as one of the following type.

1. Clustering/Dimensionality Reduction package.
2. Classification package.
3. Regression package.
4. Application Specific package (we provide just one such software).

ORGANIZATION OF THE REPORT
The Report has been organized mainly in three sections. In the first section of the report we
provide a detailed description of the usage of the SOTWARE PACKAGES that are available in
the course website: http://www.ece.umn.edu/users/cherkass/ee8591/. In the second section we
provide the other existing software packages and a brief introduction of the framework of their
usage. In the third section we provide some comparison and recommendations for different kinds
of software usages. Finally we provide some directions for improving the report to make it
appropriate for general reference.

5

SECTION 1: COURSE WEBSITE

1.1. CLUSTERING/DIMENSIONALITY REDUCTION

We mainly provide the analysis of two of the most prevalent methods used in practice.
1. Generalized Lloyd Algorithm.(GLA)
2. Self Organizing Maps (SOM).

1. Generalized Lloyd Algorithm: This algorithm is used for clustering. For details of
the algorithm please refer [1]. The implementation of the algorithm is available in the
STPRTool package used in the course website [2]. The package is publicly available at:
http://cmp.felk.cvut.cz/cmp/software/stprtool/index.html

USER INTERFACE:
The STPRTool provides mainly one interface for the (GLA).
[model,labels] = cmeans(data,num_centers,Init_centers)

 INPUT PARAMETERS
The input parameters for the interface are:

data: This is a data structure that contains the input training data. The data structure has
mainly 4 parameters.

data.X= a DxN array of the independent input variables.
Here,
D=Dimension of the input data.
N=Number of Samples.

data.num_data= Total number of samples

data.dim= Input data Dimension

 TUNABLE PARAMETERS

6

num_centers= Total number of centers K. This is a scalar value indicating the total
number of centers.[default=1]

init_centers: Though it is specified in the help documents. This parameter is not used
internally! (Awaiting an email response from Mr. Franc).

 OUTPUT PARAMETERS

model: This is a data structure which represents the clustering model. It has the
following parameters

 model .X : The cluster centers. This is an array of dimension:
[num_centers x D]

Where,
num_centers=Number of centers provided by the user.
D= Dimension of the input samples.

model.y: Implicitly added labels 1..num_centers. This is used to identify
the cluster to which a center belongs. This parameter is not for user’s
interpretation. This is mainly used by the pboundary interface to identify
the cluster labels.

model.t : Total number of iterations for finding the model. This is a scalar
value

model.MsErr: Mean-Square error at each iteration. This is an array of
dimension [1xt].

where,
t=Total number of iterations for finding the model.

labels: This is the cluster label assigned to the input data. Labels assigned to data
according to the nearest center. This output is used while assigning color map to
the input samples using the ppatterns interface. This is an array of dimension [1 x
num_data].

7

EXAMPLE (GLA ALGORITHM)

Here we illustrate the utility of the package using doughnut distribution. [1] (see pg 188)

Step 1: Generate the data

z=sort(10*rand(200,1));
noise=normrnd(0,0.1,200,2); %Bivariate Gaussian Noise with σ=0.1
traindata=[cos(2*pi*z) sin(2*pi*z)]+noise; %Doughnut Distribution
data.X=traindata'; %Form the input data structure

Step 2: Generate the MODEL with the clustering labels
[model,data.y] = cmeans(data.X, 5); %Number of centers=5

Step 3: Display the obtained model and the Voronoi regions.

title('The GLA for K=5');
xlabel('X1');
ylabel('X2');
ppatterns(data); %Plot the data
ppatterns(model,12); %Plot the model Centers
pboundary(model); %Plot the Voronoi Region

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

X1

X
2

The GLA for K=5

8

Output Analysis

Type ‘model’ in the command prompt. The output will be somewhat like:
model =
 X: [2x5 double] %These are the model centers
 y: [1 2 3 4 5] %These are the cluster labels for the centers
 t: 12 %This is the total number of iterations
 MsErr: [0.4049 0.2208 0.1773 0.1505 0.1398 0.1354 0.1324 0.1290 0.1259 0.1244 0.1228
0.1226] %Errors at each iteration

2. Self Organizing Map (SOM): (COURSE WEBSITE)

This package is used for dimensionality reduction. The package provides a batch implementation
of the original algorithm proposed by Kohonen [1982] as well as the Minimum Spanning Tree
SOM [Kangas et al., 1990].For details about the algorithms please refer to [1].

USER INTERFACE

This package mainly has two interfaces.

1. loadsomdata(traindata,testdata)
2. [mapout, qtest, topmap,training,test] = som(mapdim, knots, b1, b2, itn)

1. loadsomdata(traindata,testdata):
In order to use the SOM package it is necessary that the data is loaded in the somkernel
directory in .dat format. the user has the option to load the data sets manually or use this
interface. This is simply a helper interface which can be used in conjunction with the
main som interface.

 INPUT PARAMETERS
traindata= This is the input data on which the dimensionality reduction is to be done.
It is an NxD data array where, N=number of samples

 D=dimension of the input sample space.
testdata= (Structure is same as traindata).This is used to test the model.

 TUNABLE PARAMETERS: None.

9

 OUTPUT PARAMETERS: None.

2. [mapout,qtest,topmap]=som(mapdim, knots, b1, b2, itn)
This is the main interface of the package.The interface is mainly organized as:

 INPUT PARAMETERS: None (By input parameters we identify the parameters
such as input samples, input target samples etc.)

 TUNABLE PARAMETERS:
mapdim: The number of Topological dimensions to be used for the Mapping. For

 MST specify mapdim=0.

knots: This is the number of units to be used for each dimensions of the map.

b1 : The initial neighborhood width to use during training. A Gaussian
 neighborhood is used. This parameter describes the standard deviation of
 the Gaussian, where a value of 1 means a standard deviation roughly
 equal to the width of the map. (The usual value is 1.)

b2 : The neighborhood width to use at the end of training. Usually a value of
 .05 to .1 is used, depending on the number of units in the map.

itn : The number of passes through the training set. Usually 10-50 passes is
 sufficient.

 OUTPUT PARAMETERS:

 mapout: After program execution, this array will contain the location of each of
 the units in the sample space.

 qtest: After program execution, this array will contain a quantized version of
 the test data. For each test sample, the nearest unit will be found, and its
 location (in the sample space) will be given.

topmap: After program execution, this array will contain the test file transformed
into the topological coordinates. For each test sample, the nearest unit will be
found, and its topological coordinate will be given.

10

EXAMPLE (SOM PACKAGE)
Here we illustrate the usage of the package using the “doughnut” distribution [1]. (see pg 217)

Step 1: Generate the data

 z=sort(10*rand(50,1));
 noise=normrnd(0,0.3,50,2);traindata=[cos(2*pi*z) sin(2*pi*z)]+noise;
 z=sort(10*rand(5,1));
 noise=normrnd(0,0.3,5,2);testdata=[cos(2*pi*z) sin(2*pi*z)]+noise;

Step 2: Load the data

loadsomdata(traindata,testdata);

Step 3: Generate the SOM mapping on the data provided

[mapout, qtest, topmap] = som(1, 5,1, 0.05, 20);

Here we select,

Output map dimension =1
Number of Knots per dimension=5

The initial neighborhood width =1;
Final Neighborhood width=0.05

The number of passes through the training set =20

Step 4: We get the output as:

mapout =

 0.1414 -0.8903
 -0.7809 -0.6531
 -0.8713 0.7351
 0.2435 1.1763
 0.7636 0.3978

11

quantized version of test data
qtest =

 -0.8713 0.7351
 -0.7809 -0.6531
 -0.7809 -0.6531
 0.1414 -0.8903
 0.1414 -0.8903

topological mapping of test data
topmap =

 3
 2
 2
 1

 1
 Note: As a special case we can get results for the Minimum spanning Tree (MST) by setting
mapdim=0

HOW TO INTERPRET THE RESULTS GRAPHICALLY

The way that we can interpret the output is that in the sample space the output can only take the values
that are given in mapout array. Observe that all the qtest (quantized Test values) take the values from the
set described by the mapout array. We can also view the results graphically by using the following tactics.
(Only for 2D sample space representation)

h1=plot(traindata(:,1),traindata(:,2),'r+'); %Plot the data in Sample space
xlabel('x1 component');ylabel('x2 component');
title('Sample Space');
hold on;
h2=plot(mapout(:,1),mapout(:,2),'k*'); %Plot the Mapped o/p in Sample space
h3=plot(mapout(:,1),mapout(:,2),'k--'); %Connect the Mapped o/p points
legend([h1,h2],'Training samples','Mapped Output');
hold off;

12

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

2

x1 component

x2
 c

om
po

ne
nt

Sample Space

Training samples

Mapped Output

13

CLASSIFICATION

The Classification package used for the course is mainly STPRTool.

In this report we provide some of the commonly used routines for classification.viz,

1. K Nearest Neighbor Classification.(KNN)[Non Parametric]
2. Fisher’s Linear Discriminant Analysis.(FLD)[Parametric]
3. Quadratic Decision boundary.[Parametric]
4. Support Vector Classifiers.[Parametric]

In addition we shall also provide an additional reference for the CART (Decision Trees).For
details of the above methods please refer to [1].
NOTE: The CART toolbox is provided by MATLAB and not the STPRTool.

For the present case we shall also consider the CTM Classifier provided in the course
website. However we intend to notify that the interface is likely to change soon.

1. K NEAREST NEIGHBOR CLASSIFIER

USER INTERFACE

The main interfaces provided for this method are:-
1. model=knnrule(data,K)
2. y = knnclass(X,model)

1. model=knnrule(data,K): This interface is used to estimate the model. The briefs
of the interface are provided below.

 INPUT:
data: This is a data structure contains the input training data. The data
structure has mainly 4 parameters.

data.X= a DxN array of input independent variables.
Here,
D=Dimension of the input data.
N=Number of Samples.

data.y= an 1xN array of Class labels.
data.num_data= Total number of samples
data.dim= Input data Dimension

14

 TUNABLE PARAMETER:
K= the number of nearest neighbors.

 OUTPUT:
model= A data Structure which contains the model characteristics.(Note
KNN is a non parametric classification. So output model parameters are
provided)
The model is the same as the data except it has two more attributes added
to the structure:
model. fun=knnclass
model. K= the number of nearest neighbors (provided by the user).

(Note: Such a modeling may seem inappropriate for the time being. But we
shall justify this in the examples that we shall provide later)

2. y = knnclass(X,model):This interface is used to classify new data .

 INPUT:
X=The X values of the test data to be classified
model= The model that was determined using the knnrule on the training
data.

 TUNABLE PARAMETERS: None

 OUTPUT:
y= the Predicted Class labels for the test data provided.

15

EXAMPLE (Basic Usage)
Step 1:

Load the training data:
trn = load('riply_trn'); %riply_trn is available in the STPRTool dataset

The Structure of the trn data is:
 display(trn);

trn =
 X: [2x250 double] %The independent training variables
 name: 'Finite data set' %This is optional
 y: [1x250 double] %The Class Labels for the 250 samples
 dim: 2 %The dimension of Input data
 num_data: 250 %Total number of samples

Step 2:
Estimate the Model.(using the training samples)
model=knnrule(trn,20); % create model with training data

Step 3: Display the Model Generated:
figure;
ppatterns(trn); %Produces the Scatter Plot of the data
pboundary(model); %Displays the Decision boundary
title('Decision Boundary'),xlabel('X1 Samples'),ylabel('X2 Samples');

Step 4: Test the Model on test data provided:
tst = load('riply_tst'); %Here we generate the Test data
ypred = knnclass(tst.X,model); %Classify the test data using the model.
err=cerror(ypred, tst.y); %Calculate the Error on the test dataset.

16

SOME INSIGHTS

data=load('riply_trn');
data1=data; %Use data1 in place of model
data1.fun='knnclass'; %Just add the .fun parameter
data1.K=20; %Just add the .K parameter
figure; ppatterns(data); pboundary(data1);

The output shall be the same as above. The point that we intend to make here is that the
model that is returned by the knnrule interface is the same as appending the classifier name
and the value of K. The main calculation of forming the decision boundary is done by the
pboundary interface. (Sometimes small things can do huge tasks!).

Moreover we justify that still this is not inappropriate. We identify that the KNN Rule is a
nonparametric method. So there cannot be a parametric representation of the method. The
KNN rule can be seen more as a concept. A better analogy can be that between a class and an
object in object oriented programming. Class is simply a prototype and has no entity and the
object has some form of entity and can be represented.

17

2. FISCHER’S LINEAR DISCRIMINANT CLASSIFIER

USER INTERFACE

The main interfaces for this method are:-

 model = fld(data)

 [ypred,dfce]= linclass(X, model)

1. model = fld(data): This interface is used to estimate the model. The briefs of the
interface are provided below.

 INPUT:
data: This is a data structure contains the input data. The data structure
has mainly 4 parameters.

data.X= a DxN array of input independent variables.
Here,

D=Dimension of the input data.
N=Number of Samples.

data.y= a 1xN array of Class labels.

data.num_data= Total number of samples
data.dim= Input data Dimension

 TUNABLE PARAMETER:
None

 OUTPUT:
model= A data Structure which contains the model parameters.

model.W= The coefficients of the Linear Classifier. For binary
classification it will be an [Dx1] array.

Here,
D=Input Dimension.

model.b= The Bias term for the classifier. For binary classification
will be a 1x1 array i.e. a scalar value.

18

2. ypred = linclass(X,model): This interface is used to classify new data and to test
the performance of the model on some test data.

 INPUT:
X=The X values of the test data. This is an array of the same dimension as
the data.X input to the linear classifier used (fld interface above)
model= The model that was determined using a linear rule (e.g fld or
perceptron etc.) on the training data.

 TUNABLE PARAMETERS:
None

 OUTPUT:
ypred= the Predicted Class labels for the test dataset provided.
dfce= The absolute values of the discriminant function before applying the
discriminant rule

Note: The model being parametric has a number of parameters. This may however encourage
the user to tune the parameter values to their own use. However we point out that the
interface of interest here is mainly the FLD to develop the Fischer’s Linear Discriminant
Classifier. The functionality of the linclass interface will not be explored in the present
document.

EXAMPLE (BASIC USAGE)
Step 1

Load the training data:
trn = load('riply_trn'); %riply_trn is available in the STPRTool dataset
Note the structure of the trn data:

 display(trn);
trn =

 X: [2x250 double] %The independent training variables
 name: 'Finite data set' %This is optional
 y: [1x250 double] %The Class Labels for the 250 samples
 dim: 2 %The dimension of Input data
 num_data: 250 %Total number of samples

19

Step 2:Estimate the Model.(using the training samples)
model=fld(trn); % create model with training data

Step 3: Display the Model Generated:

figure;
ppatterns(trn); %Produces the Scatter Plot of the data
pboundary(model); %Displays the Decision boundary
title('Decision Boundary')
,xlabel('X1 Samples'),ylabel('X2 Samples');

-1.5 -1 -0.5 0 0.5 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
Decision Boundary

X1 Samples

X
2

S
am

pl
es

Step 4: Test the Model on test data provided:

tst = load('riply_tst'); %Here we generate the Test data
ypred = linclass(tst.X,model); %Classify the test data using the
err=cerror(ypred, tst.y); %Calculate the Error on the test dataset.

20

3. QUADRATIC DECISION BOUNDARY

Here we provide two different concepts of estimating the quadratic decision boundary:

METHOD 1
1. Map the input samples to a feature space by using quadratic mapping and perform a linear
decision rule in the feature space. Now a linear model in the mapped space will be equivalent
to a quadratic model in the input sample space.

METHOD 2
2. Use a quadratic discriminant function instead.

Using METHOD 1

USER INTERFACE
In this case the SPRTool provides mainly 2 interfaces to apply this method:

 outdata = qmap(data)

 quad_model = lin2quad(lin_model)

1. outdata=qmap(data): The utility of this interface revolves around the fact that we need to
map the input sample space using a quadratic mapping. Thus qmap will map input n-
dimensional data X into a new (D*(D+3)/2)-dimensional space using the quadratic mapping.
D=Input Dimension

 INPUT
data = This is a data structure containing the input data. The data structure has mainly 4
parameters.

data.X= a DxN array of input independent variables.
Here,
D=Dimension of the input data.
N=Number of Samples.

data.y= an 1xN array of Class labels.

data.num_data= Total number of samples
data.dim= Input data Dimension

21

 TUNABLE PARAMETERS:
None

 OUTPUT:
outdata: The output mapped data.

outdata.X= The newly mapped features in the feature space. This is a
(D*(D+3)/2)xN array.

Here,
D=Dimension of the input data.
N=Number of Samples.

outdata.y=same as data.y(as above)

2. quad_model = lin2quad(lin_model)

The utility of this tool revolves around the fact that the linear model obtained by
estimating a linear decision boundary in the quadratic mapped feature space has to be
converted to a quadratic model in the sample space.

 INPUT
lin_model: This is a linear model obtained by using a linear model in the feature
space. Eg: Fischer’s LDA or Perceptron etc. The model should mainly have 2
parameters:

lin_model.W=Array of coefficients/Parameters of the Linear Model.
lin_model.b=Bias term for the Linear model.

 TUNABLE PARAMETERS: None

 OUTPUT
quad_model: The quadratic model. It mainly has three parameters.

quad_model.A=Hessian of the Discriminant function
quad_model.B=The Coefficients of the Linear Terms of the discriminant
function.
quad_model.C=The constant term for the discriminant function.

22

Using Method 2

The SPRTool also provides two main interfaces

 model = mlcgmm(data,cov_type)

 quad_model = bayesdf(model)

1.model = mlcgmm(data,cov_type): This is the interface provided to compute the Maximum
Likelihood estimation of parameters of Gaussian mixture model for given labeled data sample.

 INPUT
data = This is a data structure containing the input data. The data structure has
mainly 4 parameters.

data.X= a DxN array of input independent variables.
Here,

D=Dimension of the input data.
N=Number of Samples.

data.y= an 1xN array of Class labels.

data.num_data= Total number of samples
data.dim= Input data Dimension

cov_type= specifies the shape of covariance matrix
 cov_type = 'full' full covariance matrix (default)
 cov_type = 'diag' diagonal covariance matrix
 cov_type = 'spherical' spherical covariance matrix

 TUNABLE PARAMETERS: None (Note that we do not identify the cov_type
as a tunable parameter.By tunable parameter we identify the parameters needed to
tune the original model. Here the model in consideration is the quadratic model.

 OUTPUT
model : is a data structure which provides the Estimated Gaussian mixture
model. It has mainly 3 parameters:

 model .Mean =Mean vectors.
 model.Cov =Covariance matrices.
 model.Prior= Estimated a priory probabilities.

23

2. quad_model = bayesdf(model):

This interface is used to provide the quadratic decision boundary for the model. It implements a
quadratic discriminant function given as:

f(x) = x'*A*x + B'*x + C
 where, the classification strategy is

 q(x) = 1 if f(x) >= 0,
 = 2 if f(x) < 0.

 INPUT
model: The input model is considered to be two multivariate gaussians. This is a data
structure with the following parameters.

model. Mean =Mean values. Is an array of dimension [dim x 2]
 model.Cov=Covariance. Is an array of dimension [dim x dim x 2]
 model .Prior =A priory probabilities. Is an array of dimension [1x 2]

 TUNABLE PARAMETERS
None

 OUTPUT
quad_model: Is the output quadratic model. This is a structure with the following
parameters.

quad_model.A Quadratic term(Hessian) of the discriminant function. It is an
array of dimension [DxD]

D=input dimension
quad_model.B = The Linear term of the discriminant function. It is an array of
dimension [D x 1]
quad_model.C = The Bias of the discriminant function. It is a scalar term.

For more details about the concepts of the quadratic decision boundary please refer to [1].For
more details about the usage of the tools. Please refer to [2].

24

TEST INTERFACE:
This interface is used to predict the class labels of the new test data.

USER INTERFACE
ypred = quadclass(tst,model)
This interface is used to classify the input test data using quadratic discriminant function
obtained by any of the Methods used earlier. It mainly applied the discriminant rule as:

ypred(i) = argmax tst(:,i)'*[model.A(:,:,y)]*tst(:,i) + tst(:,i)'*[model.B(:,y)] +model.C(y)
 y

where, parameters A, B and C are given in model.

 INPUT:
tst= Input test data. This is a data structure with the parameters

tst.X=This is the input independent variables of the test data. This is a [Dx N]
array with

D=Input dimension
N=Total Number of Input test Samples.

tst.y= Class Labels for the Input Samples. This is a [D x 1] array of class Labels

tst.dim= Dimension of the Input samples. This is a scalar.

tst.num_data= Total Number of samples. This is a scalar.

model= quadratic model determined by any of the above mentioned methods. This is a
data structure with the following parameters:

model.A =Quadratic term (Hessian) of the discriminant function. It is an array of
dimension [D x D]

D=input dimension
model.B = The Linear term of the discriminant function. It is an array of
dimension [D x 1]
model.C = The Bias of the discriminant function. It is a scalar term.

 TUNABLE PARAMETERS: NONE

 OUTPUT:
ypred: The Predicted Class Labels. This is a [1 x N] array of class Labels.

25

EXAMPLE for METHOD 1(Quadratic decision boundary)

Step 1: Input the Training data
trn = load('riply_trn'); % load training data

Check that the structure of the trn data is same as specified above
display(trn);

trn =

 X: [2x250 double]
 name: 'Finite data set'
 y: [1x250 double]
 dim: 2
 num_data: 250

Step 2: Map the Input data to a (Quadratic) Feature space.
map_data = qmap(trn); % give out mapped data

Step 3: Perform Linear Discriminant Analysis in the Quadratic Space
lin_model=fld(map_data);

 Note: The choice of linear model here is totally on user’s discretion. The user may feel it
appropriate to use the Linear Perceptron provided by the SPRTool. However in view of the
slow convergence rate of the model for ill Conditioned data we prefer using the LDA.
However the user may like to overcome this issue by setting the maximum number of
iteration to some lower value to ensure faster results.(With an obvious tradeoff with quality).

Step 4: Change the Linear Model to a Quadratic Model(In sample space)
quad_model = lin2quad(lin_model); % change linear model to quadratic model

Step 5: Display the Decision Boundary

figure; ppatterns(trn); % plot original data and show quadratic model
pboundary(quad_model);
xlabel('X1 Samples'),ylabel('X2 samples'),title('Quadratic decision Boundary');

26

-1.5 -1 -0.5 0 0.5 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

X1 Samples

X
2

sa
m

pl
es

Quadratic decision Boundary

Step 6: Test the Model on a Test data

tst=load(‘riply_tst’); %Load t he Test data
ypred = quadclass(tst.X, quad_model); %Determine the Predicted Class Labels
err=cerror(ypred, tst.y); % Find Classification Error
display(sprintf('The Classification Error for the model is %f',err));

EXAMPLES for METHOD 2(Quadratic decision boundary)

Step 1: Input the Training data
trn = load('riply_trn'); % load training data

Check that the structure of the trn data is same as specified above
display(trn);
trn =
 X: [2x250 double]
 name: 'Finite data set'
 y: [1x250 double]
 dim: 2
 num_data: 250

27

Step 2: Construct decision boundary with a Quadratic Discriminant Function.
gauss_model = mlcgmm(trn); % create Gaussian mixture model
quad_model = bayesdf(gauss_model); % create quadratic discriminant model

Step 3: Display the Decision Boundary

figure; ppatterns(trn); % plot original data and show quadratic model
pboundary(quad_model);
xlabel('X1 Samples'),ylabel('X2 samples'),title('Quadratic decision Boundary');

Step 4: Test the Model on a Test data

tst=load('riply_tst'); %Load t he Test data
ypred = quadclass(tst.X, quad_model); %Determine the Predicted Class Labels
err=cerror(ypred, tst.y); % Find Classification Error
display(sprintf('The Classification Error for the model is %f',err));

-1.5 -1 -0.5 0 0.5 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

X1 Samples

X
2

sa
m

pl
es

Quadratic decision Boundary

28

4. SUPPORT VECTOR CLASSIFIERS

The support vector machine (SVM) is a universal constructive learning procedure based on
the statistical learning theory (Vapnik 1995). For details about the support vector classifiers
(SVC) kindly refer to [1].

The STPRTool provides a number of interfaces for SVC. However in context of the Course
requirement we identify 3 interfaces for the implementation of Support Vector Classifiers.

 [model,Errors] = evalsvm(trn_data,val_data,options)

 [ypred,dfce] = svmclass(X,model);

 h=psvm(model)

1. [model,Errors] = evalsvm(trn_data,val_data,options): This interface is used to train
and evaluate the Support Vector Machines Classifier.

 INPUT
trn_data : This data structure contains the input training data. The data structure
has mainly 4 parameters.

trn_data.X= a DxN array of input independent variables.
Here,

D=Dimension of the input data.
N=Number of Samples.

trn_data.y= an 1xN array of Class labels.

trn_data.num_data= Total number of samples
trn_data.dim= Dimension of Input data

 PARAMETER TUNING
val_data: This data structure contains the input validation data. The parameters of
the data structure are same as the trn_data. It is only needed to be specified if the
model selection has to be done on a validation data set.

options: This specifies the set of options on which the SVM classifier has to be
evaluated. It is a data structure that contains the following parameters:-

options.ker= Specifies the type of Kernel for the SVM Classifier.The
different types of Kernels are:-

29

'linear' : linear kernel H(x,x’) = xT*x’
 'poly' :polynomial H(x,x’) = (xT* x’+arg[2])^arg[1]
 'rbf' :RBF (Gaussian) H(x,x’) = exp(-0.5*||x-x’||^2/arg[1]^2)
 'sigmoid' :Sigmoidal H(x,x’) = tanh(arg[1]*(xT*x’)+arg[2])
(Please refer to [1] pg 429 for information about setting the parameters)

options.dimarg=Specifies the dimension of arguments for the kernel
type. E.g: For ker=’rbf’ the dimarg=1 and for ker=’sigmoid’ the dimarg=2

options.arg=Specifies the set of arguments for the Kernel over which the
SVC is to be evaluated. It is generally a vector of dimension
[dimargx1].We can however set a range of arguments. In such a case the
dimension of this parameter changes to [dimargxN].

Where, N=number of arguments we need to test the model for.

options.C= Specifies the set of regularization constants. (Also called as
the constraints) over which the SVC is to be evaluated. We can set a range
of C values over which the model needs to be evaluated.

options.solver= Specifies the type of Solver to be used by the SVC.
(default ‘smo’)

options.num_folds= If the SVC is to be evaluated via Cross Validation
rather than on a Validation set, this parameter specifies the number of
folds of Cross-Validation that need to be performed for evaluating the
model.(default 5)

options.verb = The progress info is displayed if options.verb is set to 1
 (default 0).

 OUTPUT
model: This is the best model selected by the evalsvm interface based on the
validation set error or the Cross Validation error (whichever was specified).The
model is a data structure with the following parameters.

model.Alpha= The optimal Lagrange multipliers obtained by solving the
dual problem.
model.b= The bias term in the decision function.
model.nsv=Number of Support vectors

30

model.trnerr=The error on the training data due to the best model.
model.margin=The soft margin. This is used by psvm interface while
displaying the soft margin.
model.sv=Is a structure containing all the support vectors.
model.options=The options used by the Solver.
model.fun=The type of classifier to be used while displaying the decision
boundary. (Used by the PSVM interface)
model.cputime=Time taken to build the model.

Errors: This is the classification error provided by the best model on the
Validation set. This may also represent the Cross Validation error if the
Validation set is not provided.

ISSUE: One issue with the evalsvm interface (in general for any SVM solver interface for
STPRTool) is that we need to specify some argument for the ‘linear’ SVM. For the other solver
interfaces loke ‘smo’ this value is taken to be one by default. But in case of the evalsvm interface
the user needs to specify it. This somewhat confuses the user because a linear SVM can have no
arguments. Although this parameter is not used internally it is suggested to set this value to be 1.

2. [ypred,dfce] = svmclass(X,model): This is used to classify new test data based on the
SVM Classifier that we obtained. For binary classification the discriminant function is:

y(i) = 1 if f(X(:,i) >= 0
 = 2 if f(X(:,i) < 0

where f is the discrimiant function given by Alpha [nsv x 1], b [1x1] and support
vectors sv.X.

 INPUT:
X: Input vectors to be classified. It should have the same dimensions as the trn.X
used to evaluate the SVM Classifier model.

model: This is the SVM Classifier model. It mainly has the following parameters.

model.Alpha =Multipliers associated to support vectors. The dimension is
[nsv x nfun]

 model .b=Biases.The dimension is [nfun x 1]

31

model.sv.X =The X values of the Support vectors. The dimension is [D x
nsv]

 model.options.ker = The type of Kernel . This is a string.
model.options.arg =The Kernel argument for best model.
where,
nsv= Number of Support Vectors.
nfun= The number of discriminant functions. For Binary case this is 1
D= Input dimension.

 TUNABLE PARAMETERS: None

 OUTPUT:
ypred=The predicted labels of the input test data. This is a vector of dimension [1 x
N]
N=Number of samples
dfce= Values of discriminant functions. This is a matrix of dimension [nfun x N].

3. h=psvm(model):This interface is used to plot the SVM Decision boundary along with
the Soft Margin.

 INPUT:
model: This is the best model obtained by using the evalsvm interface.(see above
for the model parameters)

 TUNABLE PARAMETERS: None.

 OUTPUT: The handler to the graphical object.

32

EXAMPLE (SUPPORT VECTOR CLASSIFIER)
In this example we shall set the range of C values from [1, 10, 20, 30].We shall use Kernel type
as ‘RBF’ and set the range of σ = [0.1, 0.5, 1, 5]. The model selection will be done based on 15
fold Cross Validation. (For more information on the SVM Model Selection please refer to [1] pg
446)

STEP 1: Load the Training data
trn = load('riply_trn');

STEP 2: Define the model parameters(Parameter Tuning)

options.ker = 'rbf'; %Kernel Type is ‘RBF’
options.arg = [0.1 0.5 1 5]; %The model will be evaluated on a range of σ values
options.C=[1,10,20,30]; % Specify the Range of C values
options.solver = 'smo'; %Specify the Type of Solver
options.num_folds = 15; %Specify the number of Folds for Cross Val
options.verb = 1; %Set this to 1 if you need to print the CV Errors

STEP 3: Perform Model selection.

[model,Errors] = evalsvm(trn,options); %Use the interface for selecting the best Model

STEP 4: Now that we have all the CV Errors and the best model let us test the model on some
test data. In this case we shall use the Ripley’s test data provided in STPRTool.

tst = load('riply_tst');
 [ypred,dfce] = svmclass(tst.X,model); %Predict the Class label for the test data
cerror(ypred,tst.y) %Test the output

STEP 5: Display the Decision boundary with the Soft Margin

 figure; ppatterns(trn); psvm(model);
 hold on;
 xlabel('x1'),ylabel('x2');
 title('SVM Decision boundary with Soft Margin');

33

34

5. CONSTRAINED TOPOLOGICAL MAPPING (CTM) Classifier
The CTM is a kernel regression method based on a modification of the self-organizing
map(SOM).Here we present the modified CTM method to solve classification problems. for
details please refer to [1] pg 377.

Note:
There is still no MATLAB interface for the CTM Classifier yet. However we intend to intimate
that it is soon to come. For the present case we shall use the UNIX version of the CTM. It can
also be run in Windows using Cygwin. http://www.cygwin.com/. Moreover for using the
package we need to save the traindata and the testdata in a file format. We shall provide some
suggestions to create a file of that format using MATLAB.(For now we do not provide any
interface for loading the data as a MATLAB interface will be available soon enough)

USER INTERFACE
 ctmb.exe: This is an interactive interface which shall guide through the entire process.

We identify mainly 3 passes of model evaluation.
o INPUT:

traindata: This is an ASCII input files with tabs or spaces between the columns
of data file containing the training data. In the example we have provided a way to
create such files.

testdata: It has the same format as the traindata. This is the data on which the
model is tested.

o PARAMETER TUNING:

number of map dimension: This is the number of dimension of the feature
space. It depends upon the type of the problem. However, this should always be
less than or equal to the dimension of the input space. For using the Minimal
Spanning tree(MST) specify this parameter as 0.

smoothness level: This number controls the smoothness of the fit. A value of 0
causes bctm to find the model which minimizes the error on the training set, so
may select a non-smooth model. A value of 9 causes bctm to find the model
which minimizes the cross-validation error estimate of training set, so this will be
a smoother model. A number between 0 and 9 will minimize a mixture of these
two error measures. It does a 10 Fold Cross Validation.

35

number of units per dimension: This algorithm requires far fewer knots per
dimension than the original CTM algorithm, because a piecewise linear
approximation is used. This is usually a number between 1 and 100 depending on
the map dimensionality. If a value of 0 is entered, the algorithm attempts to find
this parameter automatically, which significantly increases the run time.

adaptive scaling: It specifies if the Adaptive scaling has to be done.

o OUTPUT:
The script provides the output statistics providing the training error, Cross
Validation Error and the Test Error. The model out puts can be obtained from the
following files:
"map" contains the locations of the units. (Output for step 2 pg 377).

"coef" contains the zero-th order as well as first order coefficients for each
unit.(Output for Step 3 pg 377).

"fit1" contains the fitted values of the test set.

EXAMPLE (CTM Classifier)

STEP 1: Save the Training and Test data file in the same folder as ctm/class
(Note: CTM has two interface regression and class. For classification the interface in class shall be used)

The way to create such file format: (We use the Ripley’s data provided in STPRTool)
trn = load('riply_trn'); % load training data
tst = load('riply_tst'); % load testing data
trainX=trn.X';
trainy=trn.y';
trainy(find(trainy==2))=-1; %The Class Labels are +1 or -1
train=[trainX,trainy];

testX=tst.X';
testy=tst.y';
testy(find(testy==2))=-1;
test=[testX,testy];

36

save traindata train -ASCII
save testdata test –ASCII

STEP 2: Run the ctmb.exe interface. (Be sure to make the .makefile first).
The rest is interactive

After the make is complete run the ./ctmb.exe

Provide the input file name and the test file name.

37

STEP 3: Parameter Tuning

Enter the Map Dimension: 1 (Makes sense to use a lower map dimension than the input
dimension)

Enter the smoothness level: 5 (We are unsure of the noise level of the data set. So going for a
safer option)

Enter the number of units per dimension: 5
Adaptive Scaling: 1=yes (see pg 377)

Note: The model selection for the CTM Classifier needs further consideration. (Pg 378)

The Output Statistics are provided as:

Moreover the output files provided are:

map(Consider this as the output of step 2 pg 377)
-0.721728 0.290520
-0.464058 0.683904
-0.168106 0.748465
0.450441 0.644347
0.285195 0.326139

As we can see it contains the Location of the Units in sample space.

38

coeff(Consider this as the output of Step 3 pg 377)
w1 w2 b(0th order coeff)
1.000001 0.000001 0.000000
-1.870324 -5.205008 -1.677625
0.378717 0.560309 -1.547222
0.564624 -0.803716 -1.362943
1.399982 -0.773489 -1.652593

The coefficients of the Linear regression in the y space.

fit: This file contains the fitted value of the data provided in the testdata. This is equivalent to the
output if the Discriminant function. We need to apply the discriminant rule:

y(i) = 1 if f(X(:,i) >= 0
 = -1 if f(X(:,i) < 0

6. DECISION TREES

TREEFIT fit a tree-based model for classification or regression. It is a mat lab routine. The
details of the interface are available in MATLAB Documentation. Here we provide some
specifics that will prove helpful for the course work.

We mainly identify 1 interfaces as the Decision tree utility.

 T = TREEFIT(X,Y,'PARAM1',val1,'PARAM2',val2,...)

1. T = TREEFIT(X,Y,'PARAM1',val1,'PARAM2',val2,...): It creates a decision tree T
for predicting response Y as a function of predictors X.

 INPUT
X= an N-by-M matrix of predictor values.
Y = either a vector of N response values (for regression) or a character array or cell
array of strings containing N class names (for classification).

 TUNABLE PARAMETERS
For all trees:

'categorical' Vector of indices of the columns of X that are to be treated as
unordered categorical variables

 'method' Either 'classification' (default if Y is text) or
 'regression' (default if Y is numeric)

39

'names' A cell array of names for the predictor variables, in the order in
which they appear in the X matrix

 from which the tree was created
 'splitmin' A number N such that impure nodes must have N or more
 observations to be split (default 10)
 'prune' 'on' (default) to compute the full tree and the optimal

sequence of pruned subtrees, or 'off' for the full tree without pruning

 For classification trees only:
 'cost' Square matrix C, C(i,j) is the cost of classifying
 a point into class j if its true class is i (default
 has C(i,j)=1 if i~=j, and C(i,j)=0 if i=j). Alternatively
 this value can be a structure S having two fields: S.group
 containing the group names as a character array or cell
 array of strings, and S.cost containing the cost matrix C.
 'splitcriterion' Criterion for choosing a split, either 'gdi' (default)
 for Gini's diversity index, 'twoing' for the twoing rule,
 or 'deviance' for maximum deviance reduction
 'priorprob' Prior probabilities for each class, specified as a
 vector (one value for each distinct group name) or as a
 structure S with two fields: S.group containing the group
 names as a character array or cell array of strings, and
 S.prob containing a a vector of corresponding probabilities

OUTPUT
t= a binary tree where each non-terminal node is split based on the values of a column of X.
NaN values in X or Y is taken to be missing values, and observations with any missing
values are not used in the fit. Mainly it is an object of class classregtree.

To display the Tree we could either use the view(t) or treedisp(t) option.

EXAMPLE for DECISION TREE

load fisheriris; % load the Fisher ‘s iris data.
 t = treefit(meas, species); % create the tree based on the loaded data.
treedisp(t,'names',{'SL' 'SW' 'PL' 'PW'}); % display the tree

40

NOTE: The Help Document Produced for the decision Tree is taken from the MATLAB
Help documents.

41

SOME MORE EXAMPLES USING THE CLASSIFICATION TOOL (STPRTOOL)

Example 1: In this example we shall see the usage of the KNN Classifiers and the SVM
Classifiers on the Haberman’s survival data set. (available at UCI Database
http://archive.ics.uci.edu/ml/datasets/Haberman's+Survival). This data set has 306 training
samples (x,y). We shall use only two input variables, Age and Number of Nodes. (Note: The

data has been prescaled to the range of [0, 1])

(This is a sample solution to the HW4.Part 2)

Step 1: Process the data

load haberman.data -ASCII

X=haberman(:,[1,3]);
y=haberman(:,4);
X(:,1)=scale(X(:,1),0,1); %Scale the data to the range of [0,1]
X(:,2)=scale(X(:,2),0,1); %Scale the data to the range of [0,1]

trn.X=X'; %Preprocess the data
trn.y=y';
trn.dim=2;
trn.num_samp=306;
trn.name='Habermans Survival data';

Step 2: Obtain the best SVM Model based on 15-Fold CV error.

diary on; % We diary all the output
 C=[1,10,20,30]; %Select the values of C
 display('RBF Kernel SVM using the Exhaustive strategy');
 options.ker = 'rbf'; %Specify the Type of Kernel
 options.C = C; %Set the Values of C

options.solver = 'smo'; %Set the type of solver
 options.verb = 1; %Print the CV Error in the screen
 options.arg=[0.1,0.5,1,5]; %Select the range of sigma values
 options.dimarg=1; %We may skip this
 options.num_folds = 15; %Perform 15 Fold Cross Validation
 [model,Errors] = evalsvm(trn,options); %Obtain the best model

42

 figure; ppatterns(trn);psvm(model); %Display the best model.
 xlabel('Age'); ylabel('Number of Nodes');
 title('SVM Decision Boundary with Margin');
 model_RBF=model;
diary off;

Step 3: Obtain the best model for KNN with K ranging from 1 to 100.

%This part is for KNN

maxK=100;
traindata=trn.X';
traindata(:,3)=trn.y';

for k=1:maxK %Select the maximum value of K
 classerror=0;

 ypred=[];
 for i=1:size(traindata,1)
 [trset,vset] =leave1out(i,traindata); %Perform Leave 1 Out CV
 trset=trset';
 vset=vset';
 trstrct=struct('X',trset(1:2,:),'y',trset(3,:),'name',...,
 'Training Data','dim',2,'num_data',size(trset,2));
 model=knnrule(trstrct,k);
 valstrct=struct('X',vset(1:2,:),'y',vset(3,:),'name',...,
 'Validation Data','dim',2,'num_data',size(vset,2));
 ypred=[ypred;knnclass(valstrct.X,model)]; %Test the model on ValidationSet

 end
 classerror=cerror(ypred,traindata(:,3));
 ModelErr(k,1)=classerror;
 ModelErr(k,2)=k;
end

Modelmin=min(ModelErr(:,1)); %Select the best model with least Validation err
for i=1:size(ModelErr,1)
 index=find(ModelErr(:,1)==Modelmin);
 optimumK=ModelErr(max(index),2);
end

traindata=traindata';
trainset=struct('X',traindata(1:2,:),'y',traindata(3,:),'name',...,

43

 'Training Data','dim',2,'num_data',size(traindata,2));

model_knn=knnrule(trainset,optimumK); %Obtain the best KNN Model

Step 4: Finally we present the two decision boundary obtained.

NOTE: The main reason behind presenting the MATLAB coding is to enumerate the utility
of the evalsvm interface. We observe that using that interface we can reduce the number of
lines of code to a significant degree. We can perform all the complex computation like:
Evaluating on a validation set, Evaluating a model by Cross Validation etc using minimal
lines of coding. This aptly reflects the ease of using the evalsvm interface.

44

EXAMPLE 2
In this example we simply try to explore the SVM Classifier a bit more. We consider the
WISCONSIN BREAST CANCER data set. The data set has Number of instances: 569
and Number of attributes: 32 (ID, diagnosis, 30 real-valued input features).This is publicly
available at
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29

For the present case we shall use the SVM Classifier of 4 types of kernels:
1. Linear.
2. Polynomial of degree [2,3,4]
3. RBF with sigma[0.1,0.5,1]
4. Sigmoid with ٧=2 and a=1.

The range of C value is [0.1,1,10,50]
Moreover we perform the model selection based on a 10 Fold Cross Validation error.

C=[0.1,1,10,50]; %Set the range of C values

%***************LINEAR SVM********************
 display('Linear SVM using the Exhaustive strategy');
 options.ker = 'linear';
 options.C = C;
 options.solver = 'smo';
 options.verb = 1;
 options.arg=1; %Check that the argument is set to 1
 options.num_folds = 10;
 [model,Errors] = evalsvm(data,options);
 model_linear=model;

%*****************POLYNOMIAL SVM*****************
 display('Polynomial Kernel SVM using the Exhaustive strategy');
 options.ker = 'poly';
 options.C = C;
 options.solver = 'smo';
 options.verb = 1;
 options.arg=[2,3,4];
 options.dimarg=1;
 options.num_folds = 10;
 [model,Errors] = evalsvm(data,options);
 model_poly=model;

45

%*************RBF SVM***********************
display('RBF Kernel SVM using the Exhaustive strategy');
 options.ker = 'rbf';
 options.C = C;
 options.solver = 'smo';
 options.verb = 1;
 options.arg=[0.1,0.5,1];
 options.dimarg=1;
 options.num_folds = 10;
 [model,Errors] = evalsvm(data,options);
 model_RBF=model;

%************SIGMOIDAL SVM********************
 display('Sigmoid Kernel SVM using the Exhaustive strategy');
 options.ker = 'sigmoid';
 options.C = C;
 options.solver = 'smo';
 options.verb = 1;
 options.arg=[[2;1]]; %The arguments are selected in conformance with MERCER rule
 options.dimarg=2;
 options.num_folds = 10;
 [model,Errors] = evalsvm(data,options);
 model_Sig=model;

OUTPUT
The Cross Validation errors for the different methods for their best Models are tabulated below.

Method Value of C Kernel Parameters Cross Validation Error
Linear SVM 1 None 0.0228
Polynomial SVM 1 Degree=2 0.0211
SVM(RBF) 1 Sigma=1 0.0211
SVM(Sigmoid) 0.1 ٧=2 and a=1. 0.3725

46

REGRESSION(COURSE WEBSITE)

In this section we mainly identify two types of methods
1. Non Adaptive methods or Linear Estimators.
2. Adaptive Methods

 Adaptive Dictionary Methods.

 Adaptive Kernel Methods.

NON ADAPTIVE METHODS(LIN/PLIN Regression)
The course website mainly provides one interface for the non-adaptive methods. This is
the regression package provided. However for the sake of simplicity we introduce the
regrIntf interface which internally use this package and at the same time provides better
usability. This interface can be used for Linear as well as Penalized Linear estimators.
The basis functions used are ‘Polynomial’ and ‘Trigonometric’ functions. The interface
will provide the best model (optimal complexity) over a Training dataset and output the
Mean Squared Error for the selected model over the Test Data. It provides for the user to
specify the model selection criteria viz,

Analytic Criteria:

1. Final Prediction Error (FPE).
2. Schwartz Criterion (SC).
3. Generalized cross-validation (GCV).
4. Shibata’s model selector (sms)
5. Vapnik’s Measure (VM)

Cross-Validation:

1. Leave-one-out Cross Validation.
2. M-Fold Cross Validation.

It also allows the user to specify the maximum degree of the basis function. For a brief
description of all the above methods please refer to [1]

USER INTERFACE

The main interface to use the package is:

[model,mse]=regrIntf(traindata,testdata,rtype,bfun,msel,degr)

47

INPUT:

traindata: The traindata is a data structure which has two parameters X and Y.

traindata.X= an nx1 or nx2 array of input data samples. This is mainly the array of the
independant variables. Here the total number of samples is n and the dimension of the
input variables is 1 or 2. (This package supports for the maximum dimension of the input
parameters to be 2. For details of the other limitations of the package please refer to the
section 3)

traindata.Y= an nx1 array of target samples. This is the desired target of the unknown
system that needs to be determined by the Estimator.

testdata.X= (same as traindata.X).The only difference is that these data samples will be
used for testing the model performance.

testdata.Y= (same as traindata.Y).The only difference is that these data samples will be
used for testing the model performance.

TUNABLE PARAMETERS

rtype= This parameter specifies the type of regression to be performed. The package supports
only two types of regressions:

 ‘LIN’ ≡ Linear Regression.

 ‘PLIN’ ≡ Penalized Linear Regression.

bfun = This parameter specifies the type of the basis function. The package supports two types
of basis functions:

‘POLY’ ≡ Polynomial Basis function

‘TRIG’ ≡ Trigonometric basis function.

msel = This parameter specifies the model selection criteria. The package provides for the
following Model Selection criteria:

‘FPE’=Final Prediction Error.
‘SC’=Schwartz Criterion.
‘GCV’=Generalized cross-validation.
‘SMS’=Shibata’s model selector.

48

‘VM’=Vapnik’s Measure.
‘XVAL’= Leave-one-out Cross Validation.
‘MVAL’=M-Fold Cross Validation.
‘COMP’= Comparison of different models on some pre-specified data generator.

degr = This parameter specifies the maximum degree for the basis function.

OUTPUT

model= This is a structure which contains 3 parameters for the model.

 model.X= Scaled values of X in the range of [0,1]

model.Y=Scaled values of Y in the range of[-1,1]

model.coef=Array of the model parameters.

mse=(Mean Squared Error) This parameter provides the model performance on the
testdata provided

EXAMPLE (LIN/PLIN REGRESSION INTERFACE)

1. Define training data set:

tmp =load('train.txt','-ascii'); %This is a 99x2 matrix
 trn_data.X = tmp(:,1); %Load the X value of the structure trn_data
 trn_data.Y = tmp(:,2); %Load the Y value of the structure trn_data

The trn_data will look something like:

display(trn_data);
trn_data =

 X: [99x1 double]
 Y: [99x1 double]

2. Similarly define the Test data set:

49

tmp=load('test.txt','-ascii');
tst_data.X=tmp(:,1);
tst_data.Y = tmp(:,2);

3. Now perform the regression:
 [model,mse]=regrIntf(trn_data,tst_data,'LIN','TRIG','VM',10);

Here we used rtype=Linear Regression
bfun=Trigonometric Function
msel= Vapnik’s Measure
degr=10

4. So now we have the optimum model parameters (based on VM)in the model data
structure.

display(model);
model =

 X: [0.0435 0.1441 0.2446 0.3452 0.4458 0.5464 0.6469 0.7475 0.8481 0.9487 1.0492]
Y: [-0.0827 -0.0687 -0.0546 -0.0406 -0.0266 -0.0126 0.0015 0.0155 0.0295 0.0435
0.0575]
 coef: [0.1394 -0.0887]

5. In order to display the model output in the scatter plot of the training and test samples
use the plotregr1D routine.

plotregr1D(traindata,testdata,model);

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Input data

O
ut

pu
t V

al
us

e

Linear Estimator

training examples

testing examples
prediction

50

So now you can see the performance of the model in a graphical form. You can also
check the Mean Squared error by typing mse in the Command Window.

EXAMPLE 2: Here we use the regrIntf to Compare different Model selection criteria

This functionality can be used to compare the performance of different models on some synthetic
data generating function predefined by the software.

For this the steps that need to be performed are:

1. Provide the Train data and the Test data as specified before.
2. Just replace the msel = ‘COMP’ and use the regrIntf as shown below:

[model,mse]=regrIntf(trn_data,tst_data,'LIN','TRIG','COMP',10);

3. In this case new training and test sets will be generated using some internal function
generator for 50 times and a comparison will be provided for the different model
selection criteria on the basis of the Mean squared Error and the Complexity
parameter of the Regression type.

fpe gcv sms sc vm cv kcv
10

-4

10
-2

10
0

method

R
is

k
(M

SE
)

Risk,n=100,SNR=1.00

fpe gcv sms sc vm cv kcv
0

5

10

15

method

D
eg

re
e

of
 F

re
ed

om

DoF,n=100,SNR=1.00

51

For E.g.: Using the above function we get the graphical display of the comparison for
different models using Box plot diagrams.

5. Limitations:

There are a number of limitations set up on this package.

1. While using the single regression routines the outputs are always scaled and plotted in
the range of [0,1] for the X values and in the range of [-1,1] for the Y values.

2. The regression functions can only be used for a maximum input dimension of 2.
3. The plotregr1D can be used to plot only one-dimensional input/output mapping.
4. While using the comparison functionality the data generator function is predefined

by the software package. No option is given to the users to specify their own
generator functions.

52

ADAPTIVE METHODS (XTAL)

XTAL is mainly designed for a basic comparison of different regression methods evaluated
in the Predictive learning Framework. This package mainly aims toward providing a
comprehendible interface for the naïve users.

INTRODUCTION to XTAL
 XTAL contains five representative methods.

1. Multi-Layer Perceptron. (ANN1): The XTAL package uses a version of multilayer
feed forward networks with a single hidden layer described in Masters (1993). This version
employs conjugate gradient descent for estimating model parameters (weights) and
performs a very thorough (internal) optimization via simulated annealing to escape from
local minima (10 annealing cycles). The original implementation from Masters (1993) is
used with minor modifications. The method's implementation in XTAL has a single user-
defined parameter - the number of hidden units. This is the complexity parameter of the
method.

2. Multivariate Adaptive Regression Splines. (MRS1): The original code provided by J.
Friedman is used (Friedman 1991). In the XTAL implementation the user selects the
maximum number of basis functions and the adaptive correction factor. The interaction
degree is defaulted to allow all interactions.

3. Projection Pursuit Regression. (PPR1): The original implementation of projection
pursuit, called SMART (smooth multiple additive regression technique; Friedman 1984a),
was used. In addition the SMART package allows the user to control the thoroughness of
optimization. In the XTAL implementation, this is set to the highest level.

4. Constrained Topological Mapping. (CTM1): The batch CTM software is used (Mulier
1994). When used with XTAL, the user supplies the model complexity penalty, an integer
from 0 to 9 (maximum smoothing) and the dimensionality of the map.

5. K nearest Neighbor Regression. (KNN1): A simple non adaptive version with
parameter selected by the user.For a brief description of the above methods please refer to
[1]

53

USER INTERFACE
The main user interface of the XTAL is :
[ypred ,nrms,rms0,nmax] = xtal (trn_data, tst_data, method, params)

 INPUT
trn_data: This is the training data to be provided by the user. It is a data structure
having the following parameters:

trn_data.X= a DxN matrix of the input independent variables.
where,

 D=Dimension of the INPUT variable.
 N= Total Number of Samples.

trn_data.y= an Nx1 matrix of the output target values.

tst_data: The parameterization is the same as trn_data except that this data will be
used for testing the model.

 PARAMETER TUNING

methods: This reflects the methods that we intend to test. The xtal supports 5 types of
methods:

1. Multi-Layer Perceptron. (‘ANN1’).
2. Multivariate Adaptive Regression Splines. (‘MRS1’).
3. Projection Pursuit Regression. (‘PPR1’)
4. Constrained Topological Mapping. (‘CTM1’)
5. K nearest Neighbor Regression. (‘KNN1’)
…….and soon enough ‘RBF1’

So when we enter the values for this parameter we use either of:

‘ANN1’,’MRS1’,’PPR1’,’CTM1’,’KNN1’ in the same format as specified.(The package
is case sensitive and as such may throw an error if lower case are used).

54

params: These are the parameters that need to be specified for the different methods
used. A brief description of the parameters for the different methods is provided below.

ANN1
 This method has one parameter. This parameter sets the number of hidden neurons to be
used in a three layer neural network. Greater the number of neurons the greater the
training time. Values are typically between 2 to 40 but can be as high as 1000.

MRS1
This method has two principal tuning parameters.

Parameter1: is the maximum number of basis functions to use. This parameter controls
the maximum amount of complexity of the model. In most cases, the results are not very
sensitive to this parameter. The range of this parameter is from 1 to 100. For most
problems, this parameter can be set to a high value (50-100) which results in a good fit.

Parameter2: The second parameter is the amount of penalty given to complex models.
This is an integer from 0-9 where 0 means a small penalty is given to complex models
and 9 means a large penalty is given. This parameter is adjusted based on the estimated
amount of noise in the data, and has the largest effect on the results. For problems with
little noise a value less than 5 are suggested. For noisy problems, values larger than 5 can
be used. A good starting value for this parameter is 5.

PPR1
This method requires one parameter. This parameter controls the complexity (number of
terms) of the model. For most problems, a value between 1 and 10 works well. This
method does not use any internal parameter selection, so this parameter directly affects
the complexity of the model and must be chosen with care.

CTM1
 This method requires two parameters.
Parameter1: is the number of dimensions used in the map. This parameter is chosen
based on whether constraints exit between the independent variables. It should reflect the
estimated intrinsic dimensionality of the data. For most problems, this is chosen to be 1,
2, or 3. This should always be less than or equal to the dimension of the input space.

Parameter2: The second parameter is a smoothing parameter. This is an integer from 0
to 9, where 9 indicate the smoothest model. If this parameter is set to 0 then the
algorithm tries to minimize the RMS error on the training set. If this parameter is set to

55

9, then the algorithm tries to minimize the cross-validation error. For any value between
0 and 9, a mixture of the two error measures is minimized. This parameter becomes
critical for problems with high noise and/or small number of samples in the training set.
For problems with low noise and large number of samples, the parameter has little effect.
For high noise problems, a larger number is suggested.

KNN1
This method requires one parameter called "k" which specifies the numbers of nearest
neighbors that are averaged to form an estimate. The value for k must be greater than 0
but less than the number of samples in training file. The package supports a maximum
value of K=100.

(Note: The maximum values and the ranges of the parameters should not be exceeded in
any case. Though the package does not block setting of such out of range values, but it
causes erroneous values in such cases).

 OUTPUT
ypred: This is the predicted output of the tst_data provided. This is an array of
dimension [Nx1]
where, N= Total number of Samples.

nrms: This is the Normalized RMS error obtained on the Test Set. This is obtained
by dividing the RMS error on the test set data by the estimated Standard deviation
of the test set.

rms0: The Standard deviation of the y values of the test set data.

nmax: This is obtained by dividing the absolute maximum error on the test data by
the range of y values of the test data.

Here we will show two examples for the XTAL usage. For further reference please see[1] and
[2].

56

EXAMPLE (XTAL)

Example 1: (1D Regression) In this example we shall use the motorcycle data
http://www.quantlet.de/mdstat/scripts/anr/html/anrhtmlframe139.html. For the sake of simplicity
we construct the validation set by chaffing out every 5th Sample from the data set and using the
rest of the data for training. We shall consider the following methods
‘ANN1’,’MRS1’,’PPR1’,CTM1 and ‘KNN1’.The range of values that we shall select for the
different methods are:
‘ANN1’= [5; 10; 25; 50; 100]
‘MRS1’=[[20,0]; [20,5]; [20,9]; [50,0]; [50,5]; [50,9]; [100,0];[100,5];[100,9]];
‘PPR1’= [1; 5; 10; 50];
‘CTM1’= [[1, 0]; [1, 2]; [1, 5]; [1, 9]];
‘KNN1’= [2; 5; 8; 11];
 The main intent of this example is to highlight the usage of XTAL.

We shall approach the problem stepwise.

STEP 1: Load the data and create the train/test data structures.
% load training/testing data
train=csvread('motorcycle_train.csv');
test=csvread('motorcycle_test.csv');

trn_data.X=train(:,1)';
trn_data.y=train(:,2);

tst_data.X=test(:,1)';
tst_data.y=test(:,2);

STEP 2: Define the methods and their parameters over which the test has to be done.
exp(1).method = 'ANN1';
exp(1).params = [5; 10; 25; 50; 100]

exp(2).method = 'MRS1';
exp(2).params = [[20,0]; [20,5]; [20,9]; [50,0]; [50,5]; [50,9]; [100,0];[100,5];[100,9]];

exp(3).method = 'PPR1';
exp(3).params = [1; 5; 10; 50];

exp(4).method = 'CTM1';
exp(4).params = [[1,0];[1,2];[1,5];[1,9]];

57

exp(5).method = 'KNN1';
exp(5).params = [2;5;8;11];

STEP 3: Iteratively call the different methods and select their best model based on the
performance on the test data.

for i=1:length(exp)

 fprintf('\nExperiment: %s\n', exp(i).method);
 fprintf('---------------------------------------\n');

 [ypred,exp(i).nrms,exp(i).rms0,exp(i).nmax] =
xtal(trn_data,tst_data,exp(i).method,exp(i).params);

 [exp(i).min_nrms,exp(i).best_param_idx] = min(exp(i).nrms);
 fprintf('Minimal NRMS=%f achieved with parameter (', exp(i).min_nrms);
 fprintf('%d ', exp(i).params(exp(i).best_param_idx,:));
 fprintf(')\n');
 h0=figure;
 set(h0,'Name',exp(i).method);
 h1=plot(trn_data.X,trn_data.y,'kx');
 hold on;
 h2=plot(tst_data.X,tst_data.y,'rx');
 h3=plot(tst_data.X,ypred(exp(i).best_param_idx,:),'bx--');
 legend([h1 h2 h3],'traing examples','testing examples','prediction');
end

STEP 4:Now select the best method based on their best model’s performance on the Test data.

[min_nrms,best_method] = min([exp.min_nrms]);
fprintf('\n** Summary **\n\n');
fprintf('Method NRMS nmax parameter\n');
fprintf('--\n');
for i=1:length(exp)
 fprintf('%s %12.6f %12.6f (',...
 exp(i).method,exp(i).min_nrms,exp(i).nmax(exp(i).best_param_idx));
 fprintf('%d ', exp(i).params(exp(i).best_param_idx,:));
 fprintf(')');
 if i == best_method
 fprintf(' best result');
 end
 fprintf('\n');
end

58

OUTPUT(Graphical)

Fig1: Best Model for ANN with Hidden number of units=5

Fig2: Best model for MARS with parameter (20,1)

59

Fig 3: Best Model for PPR with number of units=5. (This is also the best method)

Fig4: Best model for CTM with parameters (1, 9) (makes sense)

60

Fig5: Best model for KNN with value of K=11

Moreover XTAL also provides the summary of performance of the best models of the different
methods.

** Summary **

Method NRMS nmax parameter
--
ANN1 0.459831 0.223371 (5)
MRS1 0.455323 0.206250 (20 0)
PPR1 0.440387 0.199387 (5) best result
CTM1 0.470975 0.238446 (1 9)
KNN1 0.450871 0.229223 (11)

61

EXAMPLE 2: (High Dimensional Data) In this example we shall see further usage of XTAL
for the Computer Hardware data. This is a publicly available at:
http://archive.ics.uci.edu/ml/datasets/Computer+Hardware
The data set has 209 samples and 6 attributes. For this example we perform a 5 Fold Cross
Validation to select the best model. The methods and parameters used in this case are given
below:
 'ANN1' = [5; 10; 25; 50; 100]
'MRS1' = [[20,0]; [20,5]; [20,9]; [50,0]; [50,5]; [50,9]; [100,0];[100,5];[100,9]];
'PPR1'= [1; 5; 10; 50];
'CTM1'= [[1,0];[1,2];[1,5];[1,9];[2,0];[2,2];[2,5];[2,9];[3,0];[3,2];[3,5];[3,9]];
'KNN1' with K=1, 2, 3, 4… 50
Here we show the usage of XTAL in a stepwise manner.

STEP 1: LOAD the Data
We do this in the Cross Validation part.

STEP 2: DEFINE the Methods and Parameters
exp(1).method = 'ANN1';
exp(1).params = [5; 10; 25; 50; 100]

exp(2).method = 'MRS1';
exp(2).params = [[20,0]; [20,5]; [20,9]; [50,0]; [50,5]; [50,9]; [100,0];[100,5];[100,9]];

exp(3).method = 'PPR1';
exp(3).params = [1; 5; 10; 50];

exp(4).method = 'CTM1';
exp(4).params = [[1,0];[1,2];[1,5];[1,9];[2,0];[2,2];[2,5];[2,9];[3,0];[3,2];[3,5];[3,9]];

K=1:50;
exp(5).method = 'KNN1';
exp(5).params = K';

STEP 3: Find the Best Model for the different methods based on the performance on the
Cross Validation error.

for i=1:length(exp)

 fprintf('\nExperiment: %s\n', exp(i).method);
 fprintf('---------------------------------------\n');
 nrms_av=zeros(size(exp(i).params,1),5);
 for j=1:5

62

 [trn_data,tst_data]=crossValFold(j); %Check the CV is done here
 [ypred,nrms,rms0] = xtal(trn_data,tst_data,exp(i).method,exp(i).params);
 nrms_av(:,j)=nrms_av(:,j)+nrms;
 end
 exp(i).nrms=mean(nrms,2);
 [exp(i).min_nrms,exp(i).best_param_idx] = min(exp(i).nrms); %Select the best model

 fprintf('Minimal nrms=%f achieved with parameter (', exp(i).min_nrms);
 fprintf('%d ', exp(i).params(exp(i).best_param_idx,:));
 fprintf(')\n');
end

STEP 4:Select the best Method

[min_nrms,best_method] = min([exp.min_nrms]);
fprintf('\n** Summary **\n\n');
fprintf('Method nrms nmax parameter\n');
fprintf('--\n');
for i=1:length(exp)
 fprintf('%s %12.6f (',...
 exp(i).method,exp(i).min_nrms);
 fprintf('%d ', exp(i).params(exp(i).best_param_idx,:));
 fprintf(')');
 if i == best_method
 fprintf(' best result');
 end
 fprintf('\n');
end

OUTPUT: No Graphical representation can be given in this case. However the performance
summary can be obtained as:-

** Summary **
Method nrms nmax parameter
--
ANN1 0.538486 (5)
MRS1 0.550195 (20 9)
PPR1 0.438475 (5) best result
CTM1 0.846139 (3 2)
KNN1 0.467276 (1)

63

SECTION 2: OTHER SOFTWARES (BRIEF OVERVIEW)

In this section we shall simply provide a brief overview of the different softwares available. This
report will simply contain the general Framework of the packages and the strength and the
weakness of such a Framework. The main reason behind such an approach is that most of these
softwares have their own help documents and as such the author sees no credit in replicating
most of those materials. However the reader is welcome to contact the author of the document
for any help regarding the softwares that will be covered in this section.

PRTools:(GENERAL FRAMEWORK)

Publicly available at: http://www.prtools.org/

In such a framework we mainly identify two types of interface.

1. Interface1: Interface to determine the model.
2. Interface2: Interface to predict the output on some test data.

1. Interface1: This is provided in the form
[model, Error] = method (trainset, parameters)

 INPUT:
trainset: This is an object of type data. The package provides another interface

trainset =data(X, Y) to convert the input data to the following object.

 TUNABLE PARAMETERS
parameters: These are generally some vector of parameters. This mainly depends
upon the type of the method under consideration.

 OUTPUT
model: This is the model obtained by the method on the trainset. This is an object
of class mapping.
Error: This is the Error(or model performance) on the trainset.

2. Interface2:These kinds of interfaces are provided in the form:
Ypred=testset*model

64

As we can see the main intent of this kind of object oriented programming is to
overload the operators. Here we see a good example for this. However we see a
number of issues in such kind of framework.

GOOD
 The Object Oriented Programming concept may seem very helpful to the advanced

users where the level of abstraction is quite high.

 Unlike STPRTool(especially the Quadratic Decision Boundary) the usage of
interfaces are really easy. The user’s can just plug in the Training data and expect
the equivalent decision boundary without any form of mapping from input space to
Output space etc.

BAD
 No ‘get_param’ method has been provided. In such a case the user will not have the

view ability of the model parameters. Infact a basic point for every object oriented
programming is that it should have a ‘get’ and a ‘set’ method.

 User need to convert the object to a structure to get the parameters. This is seen as
an added overburden upon the user.

Moreover upon private communication with the designers it has been confirmed that the
Toolbox is mainly intended for Classification problems. The toolbox does have some
interfaces for the regression type of problems, but they are not fully functional.

WEKA (GENERAL FRAMEWORK)

Here we shall be referring to the Weka 3.5.8.This is publicly available at:
http://www.cs.waikato.ac.nz/ml/weka/
Weka is a collection of machine learning algorithms for data mining tasks. In the Version 3.5.8
the organization of WEKA class hierarchy has changed from the previous versions. The Main
class is no more the GUI Chooser. Of course in WEKA there can be a number of different types
of Windows; however the main frame work is the same. In this report we shall simply provide
the basic guideline about its usage.(The Examples will be shown mainly for the Explorer
Window)

We mainly identify WEKA’s framework as

 INPUT
In this case the data is presented as a .csv or .arff file. (There are a number of other file
formats). These data can be loaded in the interface and can be preprocessed by a number
of filters provided.

65

 METHOD/PARAMETER SELECTION
The WEKA mainly identifies all kinds of problems either as

o Classify: It seems rather confusing to naïve users who may be unaware that
WEKA provides the different regression methods in the Classify tab!

o Clustering
o Association

 OUTPUT
An Output window provides the user with the Model parameters and the Model
performance. One more issue with the WEKA is that it does not provide any graphical
display of the Decision boundary. We can simply presents a form of representation of the
decision boundary and leaves the rest of imagination to be done by the user!

EXAMPLE(WEKA): For the sake of simplicity we use the Example 2 in pg no .Unlike XTAL
,WEKA does not provide some of the methods like PPR, MARS, CTM (even KNN
regression),however it does provide the MLP function.

We test the CPU Hardware data for the set of Parameter setting

Variable Learning Rate=True;
%In this case the Learning rate is updated by dividing by the Epoch number.

Number of Hidden Layers=
Case 1: 2 Hidden layers with 5 Neurons per layer
Case 2: 3 Hidden Layers with 5 Neurons per layer.
Case 3: 5 Hidden layers with 5 Neurons per layer.
Case 4:10 Hidden layers with 5 Neurons per layer.
Case 5: We keep it as ‘a’ =(attribs + classes) / 2.This is a wild card entry. A number of
other wild card entries are supported.

In this experiment the Initial Learning rate is selected as 0.3 and the Momentum term is kept
0.2.Moreover the training time is kept as 500 epochs.

We shall search for the best model based on the RMS error on the 5 Fold Cross Validation

66

STEP 1:
Load the data in the Experimenter tool.

As we can see the left Lower Box we load the data set. In the Left upper box we specify the type
of test to be performed. In the right lower box we specify the methods and their parameters.

STEP 2
RUN all the methods. We do not show it here. It is simply clicking the RUN Button in the next
Tab. The Run Window moreover displays the status of the execution of the experiment.

67

STEP 3
We can analyze the methods on a number of different statistics. This can be done in the analyze
window.

As we can see the user has a number of options for selection of the test type.

GOOD
 WEKA provides a repository of Methods that no other software can match.

 It is totally graphical and easy to use.
BAD

 WEKA provides the Regression routines in the Classify tab. Any naïve(as well as
experienced user) is likely to get confused!

 The visualize window for WEKA does not provide any decision boundary and as such
the users are left to the qualms of their imagination capability.

 Although WEKA does provide a lot of flexibility in parameter selection. It does not
provide any guidelines for parameter selection. It seems really hard for a user to decide
upon the parameter values that they might need to select for any particular method. In
short, the parameter tuning in WEKA though flexible lacks appropriate guidance.

68

SPIDER
The spider an object orientated environment for machine learning in Matlab. Aside from easy
use of base learning algorithms, algorithms can be plugged together and can be compared with,
e.g model selection, statistical tests and visual plots. This gives all the power of objects
(reusability, plug together, share code) but also all the power of Matlab for machine learning
research.

In a sense SPIDER is quite similar to PRTool with the exception that SPIDER provides the get
and the set methods. The basic

GENERAL FRAMEWORK
This software has by far the most complex framework. Here everything is an object of different
classes. So any new user is likely to get confused with the different jargons that it uses.
Moreover the help documents are not at par with the level of coding in this software. This
software has the best level of abstraction but this comes with the worst viewablity.

 INPUT:
d=data(X,Y)
For providing the input we need to construct an object of class data. The elements of the
object are the X and Y values of the trainset.

 PARAMETER TUNING
This is also totally dependent upon the type of method used. A general form of such
parameter tuning is:
Select the method
alg=algorithm; %This is the type of Algorithm used.

TUNE the parameters for the method
alg.parameters=values; %Update the present algorithm object
or
alg2=param(alg,hyperparameters); %Create a new object

 OUTPUT
A number of output methods are defined,viz,
test, loss, plot etc

69

EXAMPLE: In this case we repeat the EXAMPLE provided in pg .We present that using
SPIDER is almost as powerful as the evalsvm interface provided by the STPRTool. We provide
a step wise illustration.

STEP 1 : Load the data.

d=data(X,Y); %Here d is an object of class data

STEP 2: Define the method and perform parameter tuning
s=svm; %Define an object of class svm

s.child=kernel('rbf',1); %Specify the kernel type
 s_par=param(s,'rbf',[0.1,0.5,1,5]); %Specify the range of parameters
s_CV=cv(s_par);
s_CV.folds=15; %Specify the Cross Validation Object
[err model]=train(s_CV,d); %Train the Model
loss(err); %Find the Loss

GOOD
 As we can see in this case we can easily test a model for a number of C values and for a

range of algorithm hyperparameters. So such a framework is very powerful.
BAD

 As viewable in the previous example.The user has no viewability of the model.

 No graphical option has been provided for the model object of class CV. The user has to
search for the best model and then plot the model.

 It has a number of Naming conflict with the basic MATLAB Toolbox. The perl script for
correcting this conflict does not work!

70

SECTION 3: SOME RECOMMENDATIONS

In this section we provide some recommendation for the different types of problems. This is provided in
the table below:-

ID Problem Type Recommended Software Package

1
Clustering/Dimensionality
Reduction PRTools/SOM(EE 8591)

2 Classification STPRTool

3 Regression XTAL

4 SVM(Classifier) STPRTool

5 SVM(Regression) LIBSVM

This Recommendation is aimed towards presenting the simplest interface with genuine inherent
algorithms. The user may feel free to deviate from this recommendation.

CONCLUSION

In this Project we provide a somewhat detailed overview of the Softwares present in the Course website
and a brief overview of some of the most prevalent Machine learning softwares available. Our focus has
mainly been towards presenting the best(simple) softwares . The ulterior goal of the project has been to
quarry the different interfaces available in the different software packages and finally to present with the
best available interface for implementing any method.

FUTURE SCOPE
This project can be further improved in many directions. We simply provide some of them that
we feel should enhance the essence of the work.

1. This document only focuses on the basic usage of the different software available in the
course website. A detailed usage considering a wide range of problems starting from
different types of synthetic data to real data may be considered. In that way the pros and
cons of the softwares can be explored to even greater details.

2. More softwares need to be considered. Moreover the author understands that the general
framework provided for the other softwares may seem confusing to new users. But it is

71

also to be noted that a balance has to be maintained between the amount of material
covered and the size of the document.

Reference:

[1] Vladimir Cherkassky and Filip Mulier, ‘LEARNING FROM DATA’,2nd Edition, John Wiley
and Sons. Inc 2007

[2] Vladimir Cherkassky,Don Gehring and Filip Mulier , ‘Comparison of Adaptive Methods for
Function Estimation from Samples’, IEEE Transactions on Neural Networks,Vol.7,No 4,JULY 1996.

