
A Novel Framework for Classification using Regression

routines

Sauptik Dhar

December 12, 2008

Abstract

This project presents a novel framework for classification using different regression rou-
tines.In this project we build a framework to represent such problems as an optimization
problem.Using Sequential Quadratic Programming we solve the optimization problem to obtain
the parameters of the parametric model.We obtain the final decision boundary and provide
a comparison with the different classifiers based on their classification error.Further we also
provide some insights from Predictive Learning perspective.

1 Introduction

Most existing implementations of the classification methods based on regression routines mainly
minimize the squared error or cross-entropy error for optimal parameter selection. Although
these loss functions are highly correlated to the classification error,there are situations when a
reduction in the squared error or cross-entropy error does not minimize the classification error[1].
This motivated the design of new algorithms which adopts early stopping criteria to avoid any
increase in the empirical classification error. However, most of these algorithms use some heuristic
methodology to ensure such a condition [1]. In our project we present a better framework for
dealing with such issues. Moreover for the sake of simplicity we use simple parametric regression
routines and provide a comparison with the present methodologies used.

This report is organised as follows.In section 2 we present the basic problem formulation.Section
3 deals with the problem analysis and converting the problem to a new form.In section 4 we provide
an algorithm for parameter tuning.Section 5 presents the results of the proposed methodology with
the prevalant classifiers.Finally we conclude the report in section 6.We provide some open issues
with the framework in section 7.

2 Problem Formulation

Consider a finite training sample (x, y)n.The training set consists of m-dimensional input vectors x
and a univariate output y.The total number of samples is n.Using regression routines we can fit a

1

model to this data minimizing the squared error. And then threshold the model to some threshold
level. However, our ultimate goal is to classify the data and hence to reduce the misclassification
error. So a proper way of doing this could be:

min
n∑

i=1

(yi − f(xi,w))2

s.t
n∑

i=1

I(yi 6= sign(f(xi,w))) ≤ ξ

where I(.) is an Indicator function and ξ is some predefined value equivalent to an acceptance
level.We may also view it as a measure of the maximum classification error allowed.Moreover it can
also be considered as a user tunable parameter.This shall be discussed in details in the section 4.

3 Problem Analysis

The Problem statement in (1) can be further rewritten as

min

n∑

i=1

(yi− f(xi,w))2

s.t
1
2

n∑

i=1

(1− yisign(f(xi,w))) ≤ ξ

where sign(x) function is defined as:-

sign(x) =
{ −1 x ≤ 0

1 x ≥ 0

A number of methods have been proposed to provide a continuous representation of the sign function
with different form of asymptotics for the best approximation [3],[4],[5]. Rather we select the most
frequently used sigmoid function to provide the continuous form as seen in [6],[7].So we replace the
sign(x) function using a tanh(x) function.The problem statement resolves to:

min
n∑

i=1

(yi − f(xi,w))2

s.t
1
2

n∑

i=1

(1− yitanh(f(xi,w))) ≤ ξ

For the sake of simplicity in this report we shall only consider the Linear Estimators with a 1st
order polynomial basis function.The final simplified problem thus resolves to:

2

min

n∑

i=1

(yi − xT
i ∗w)2

s.t
1
2

n∑

i=1

(1− yitanh(xT
i ∗w)) ≤ ξ

Moreover we observe that the objective function in our case is convex.But the constraint,in this case
though continuous and differentiable,lacks convexity.This is due to the tanh function which is convex
in the R− region but is concave in the R+ region.A good choice for solving such an optimization
problem could be using the Sequential Quadratic Programming(SQP) method.In such a case we
solve a Quadratic Programming(QP)subproblem in each step by expanding the Lagrangian in
Qudratic terms and linearizing the constraint.

4 The Tunable Parameter

We observe that a good solution for the classification problem is mainly dictated by appropriately
setting the constraint ξ.We consider this as the user tunable parameter.So the ulterior goal of this
framework is to attain an optimum value for the constraint.A very large value of ξ is equivalent
to putting no constraint at all.Again a very small ξ value may result in an infeasible system.For
instance putting ξ=0 in case when the data is inseperable seems to be an overstatement.So a
good ξ parameter is necessary for a good classifier.However as a least requirement we expect our
Constrained Least Square Classifier(CLS) to perform better than Ordinary Least Square(OLS)
without any constraints.So we may initialise ξ= Classification error due to an OLS solution.
We present a naive yet effective algorithm for selecting (rather searching) the optimal value of ξ.

Initialise
preverr=currerr
currconstr=Classification error for the OLS
prevconstr=currconstr
for k=1 to MaxIter

const=(0.5)k

if (Previous Error ≺ currerr)
Reduce the Previous constraint by a step of const.

else
Reduce the Current constraint by a step of const.

end if
Solve the Constrained Nonlinear LS problem using SQP
preverr=currerr
currerr=Classification Error due to the new model

end for
Select the best model obtained so far

The algorithm that is presented here is not the optimization algorithm.It is simply a heuristic search
algorithm for the optimal constraint for a particular dataset.

3

5 Results

In this section we compare the performance of the newly introduced method with the prevalant
classification methods.For comparison we use the following.
Performance Metrics:
1.Classification Error:Lower the Classification error,better is the model.
2.Time Complexity:This is the CPU Time taken for evaluation of the model.

We use the following methods.
1.Ordinary Least Squares(OLS) Classifier.(No constraints)
2.Constrained Least Square(CLS) Classifier.(with the prescribed constraint search method)
3.Fischer’s Linear Discriminant Classifier.(FLD)
4.Linear Perceptron Classifier(LPC)(with maximum iteration=5000)
5.Linear Support Vector Classifier(SVC).
For the SVC the C parameter is chosen based on [11]within the range of [2−5,210]and the optimal
model is selected based on the minimum classification error on the training data.Moreover we use
the Sequential Minimal optimization algorithm[9] in this report.Most of these tools are available
in [12].
The SQP problem for the CLS is solved by using the TOMLAB Optimization toolbox[13].Here
we use the Schittkowski SQP [10].For this case we use a numerical difference method to find the
Hessian rather than using the BFGS update.

5.1 Experiment Setup 1

We begin by using the two Dimensional Ripley’s data set.This data set contains 250 Samples.The
results are provided in the following Table.

Table 1: Performance of different methods on Ripleys dataset
Methods Performance

Classification Error CPU TIME(in sec)
OLS 0.144 0.11
FLD 0.144 0.04
LPC 0.412 0.511

SVC(Linear) 0.132 2.885
CLS(MaxItr=100) 0.124 35.15
CLS(MaxItr=500) 0.132 208.81

Here the best SVC model is obtained for C=2

5.2 Experiment Setup 2

In this case we provide the results obtained on the Haberman’s dataset[15].The dataset contains
306 samples.Only two input variables Age and Number of nodes are used.The input variables are
scaled in the range of [0,1].The results are provided in the following table.
Here the best SVC model is obtained for C=0.03125

4

Table 2: Performance of different methods on Haberman’s dataset
Methods Performance

Classification Error CPU TIME(in sec)
OLS 0.2549 2.784
FLD 0.2549 0.04
LPC 0.69935 0.551

SVC(Linear) 0.2647 84.351
CLS(MaxItr=100) 0.22549 40.819
CLS(MaxItr=500) 0.22549 273.64

5.3 Experiment Setup 3

In this case we provide the results obtained on the Parkinson’s dataset[14].In this dataset we omit
the information of the nonlinear measures and the signal fractal exponent.The data set contains
195 samples.The data set used contains 15 Attributes and 1 Class label.The dataset is prescaled to
the range of [0,1] before applying to the different classifiers.The overall performance of the different
methods are provided below.

Table 3: Performance of different methods on Parkinson’s dataset
Methods Performance

Classification Error CPU TIME(in sec)
OLS 0.17436 0.32
FLD 0.22051 0.03
LPC 0.1641 0.53

SVC(Linear) 0.1641 8.142
CLS(MaxItr=100) 0.092308 52.195
CLS(MaxItr=500) 0.076923 533.3

Here the best SVC model is obtained for C=64

5.4 Experiment Setup 4

In this case we compare the performance of the CLS(MaxItr=100) and CLS(MaxItr=500)
methods.By MaxItr we refer to the Maximum iteration for the SQP algorithm to converge.So here
we provide a comparison of the methods on a synthetic data.The synthetic data is a dataset with
two overlapping Gaussians belonging to two classes with means(-1,-1) and (1,1) and deviation
1.The dimension of the input samples is 2.

We test by varying the number of samples from n=20,50,100.We provide the boxplots for
the performance of the methods.(the boxplots have been generated by running the test 20 times)

5

CLS(MaxIter=100) CLS(MaxIter=500)
0

0.02

0.04

0.06

0.08

0.1

C
la

ss
ifi

ca
tio

n
E

rr
or

Variance in the Classification Error

CLS(MaxIter=100) CLS(MaxIter=500)
0

20

40

60

80

100

T
im

e
C

om
pl

ex
ity

Variance in the Time Complexity

Figure 1: The comparison of the Performance of CLS for MaxItr=100 and MaxItr=500 for 20
samples

CLS(MaxIter=100) CLS(MaxIter=500)
0.02

0.04

0.06

0.08

0.1

0.12

0.14

C
la

ss
ifi

ca
tio

n
E

rr
or

Variance in the Classification Error

CLS(MaxIter=100) CLS(MaxIter=500)

20

40

60

80

100

120

T
im

e
C

om
pl

ex
ity

Variance in the Time Complexity

Figure 2: The comparison of the Performance of CLS for MaxItr=100 and MaxItr=500 for 50
samples

CLS(MaxIter=100) CLS(MaxIter=500)
0.02

0.04

0.06

0.08

0.1

C
la

ss
ifi

ca
tio

n
E

rr
or

Variance in the Classification Error

CLS(MaxIter=100) CLS(MaxIter=500)
0

50

100

T
im

e
C

om
pl

ex
ity

Variance in the Time Complexity

Figure 3: The comparison of the Performance of CLS for MaxItr=100 and MaxItr=500 for 100
samples

6

5.5 Result Analysis

We observe that the CLS outperforms most of the prevalant classifiers,but is inherently very
slow.This can be attributed to the fact that the Heuristic for the selection of the appropriate
constraint adopts somewhat a pseudo-exhaustive search.For the LPC,from our knowledge of the
Perceptron rule we identify that the LPC model lacks convergence in case of a non-seperable
dataset.This resulted to the ill performance of the LPC in the nonseperable case.As for SVC,we
already know that Support Vector Machine Classifier is a universal classifier and can be used
to learn a variety of representations.But here it seems somewhat limited owing to the heuristic
applied for the selection of C.Optimal selection of C is very important for the performance of SVM
Classifiers.However we also report that setting the value of C to a value more than 211 takes a lot
of time for model evaluation using SMO[9].This can be seen as a negative point for the SVC.The
main point that we intend to make from the above discussion is that the CLS does perform
reasonably better than most other classifiers,in the datasets used albeit the added overhead of the
time complexity.A better claim could be made after a detailed study of the Problem structure
and further consolidated on some more empirical results.However,one thing that still remains
quite disturbingly unexplained is that in Table 1 the CLS(Maxitr=100) performs better than
CLS(Maxitr=500).This seems totally confusing and needs further consideration.

Moreover from the boxplot analysis of the performance of the CLS(Maxitr=100)and
CLS(Maxitr=500) we observe that both the methods have almost similar performance on
the synthetic data.Moreover,we have seen that the CLS(Maxitr=100) is relatively faster in cases
Experiment 1,2 and 3 with a small performance degradation.So a choice of smaller Maximum
Iteration is desirable.But to what extent the maximum iteration needs to be small is still an open
question.

6 Concluding Remarks

Although it seems a bit too early to provide conclusions,however from the empirical results that we
have generated the CLS definitely seems to be a potential classifier in comparison to the other avail-
able linear classifiers.We can atleast claim that the CLS performs better than the OLS method.The
framework could be further extended to nonlinear regression routines.However a possible limitation
for such a framework could be that the framework remains valid only for Parametric methods.
Moreover,results direct towards using smaller Maximum Iteration counts with a slight degradation
of the Classification Error.

7 Future Plans

Some of the results generated conflict our intuitions(viz.Table 1).So possible direction of future
work could be:
1.Provide an explanation for the results generated in Table 1
2.Exploration of the Problem Structure could lead us to explore better Optimization methods.
3.Test the model for different kinds of data sets.
4.Development of such a framework for Nonlinear Parametric functions.

7

Moreover we also need to explore the implication of the approximation that we made in the con-
straint function.Although it seems reasonable that the present form provides a measure of the
Classification error.It is not an exact representation of the Classification error.
We also need to note that the present Framework has no application from the Predictive Learning
Perspective.From the problem statement provided above,it is pretty much clear that the model
is likely to overfit.However a slight alteration in the constraint formulation may result in better
methods for the Predictive Learning Framework.In short,for the present case this model should not
be used for Predictive Learning.

APPENDIX

Listing 1: AllMethodsFINAL.m

%dat=load('riply trn'); %This is available in STPRTOOL
load parkinson; %This is a Processed data
%dat=data2(2); %Habbermann Cancer Data Preprocessed

%***
%****USE STPRTOOL To run this module******
%***

%####### FISCHER LDA ##########
t=cputime;
model = fld(dat);
ypred = linclass(dat.X,model);
cerr Fischer=cerror(ypred,dat.y);
t FISCH=cputime−t;

%######## PERCEPTRON CLASSIFIER ##########
t=cputime;
options.tmax=5000; %If it has not converged still It wont!!!
model = perceptron(dat,options);
ypred = linclass(dat.X,model);
cerr Percep=cerror(ypred,dat.y);
t PERCEP=cputime−t;

%############# SVM Classifier ########

C=[];
for pwr=−5:10

C=[C,2ˆpwr];
end

options.ker = 'linear';
options.C = C;
options.solver = 'smo';
options.verb = 1;

8

options.arg=1;
t=cputime;
[model,Errors] = evalsvm(dat,dat,options);
t SVC=cputime−t;
ypred = svmclass(dat.X,model);
cerr SVC=cerror(ypred, dat.y);

Listing 2: NewMethod.m
clear;
Name='Sauptik';
%**
%*******Load the Type of Data**********************
%**

%dat=load('riply trn'); %Ripley's data
%load parkinson; %Parkinson's Data(This relatively a new data set)
%dat=data2(2); %Habberman Cancer data

%***
%**Preprocess the data for usage with TOMLAB*****
%**

X=dat.X';
X=[X,ones(size(X,1),1)];
y=dat.y';

for i=1:length(y)
if(y(i)==2)

y(i)=−1;
end

end

%**
%*******Initialise the Problem***********************
%**
x 0 = ones(1,size(X,2));
%**
%From here we need the Liscenced version of TOMLAB
%**
%Note:The Liscence that I am sending is valid only upto Dec 19.

% CLSASSIGN::Assigns the Problem Structure.No Constraints

Prob = clsAssign('sauptik r',[], [], [], [], Name, x 0, ...
y,[],[],[],[],[],[],[],[],[],[],[],[]);

Prob.user.X = X; %We use this variable in the Problem statement
t=cputime;
Result = tomRun('consolve', Prob, 0); %Use SQP on the Problem.
t OLS=cputime−t;

%***
%****We get the Model for the OLS*************
%***

9

model.W=Result.x k(1:end−1);
model.b=Result.x k(end);
ypred = linclass(dat.X,model);
cerr=cerror(ypred,dat.y);
cerr OLS=cerr;
%**
%*********Initialise the CLS****************
%**
prev cerr=cerr;
constr=cerr;
prev constr=constr;
max=−7; %This is something that depends on the type of problem
for par=−1:−1:max

param=2ˆpar;
if(prev cerr<cerr)

cerr=prev cerr;
constr=prev constr;
constr=constr−param*constr;

else
prev constr=constr;
constr=constr−param*constr;

end
Prob = clsAssign('sauptik r',[], [], [], [], Name, x 0, ...
y,[],[],[],[],[],[],[],[],'sauptik c',[],[],[],constr);
Prob.user.X = X;
Prob.optParam.MaxIter =100; %Here you can change the Maximum Iterations
Result = tomRun('consolve', Prob, 0);
model.W=Result.x k(1:end−1);
model.b=Result.x k(end);
ypred = linclass(dat.X,model);
prev cerr=cerr;
cerr=cerror(ypred,dat.y);
if(cerr≤prev cerr)

final model CLS=model; %Update the Final Model
end
end
%########The Final CLS Model#########
ypred = linclass(dat.X,final model CLS);
cerr CLS=cerror(ypred,dat.y);

t CLS=cputime−t;

References

[1] Vladimir Cherkassky and Filip Mulier. Learning From Data-2nd ed,Wiley 2007

[2] D.P. Bertsekas. Nonlinear Programming, Athena Press, 2004.

[3] Alexandre Eremenko and Peter Yuditskii.Uniform approximation of sgn x by poly-
nomials and entire functions. J. d’Analyse Math., 101 (2007) 313-324

[4] F. Nazarov, F. Peherstorfer, A. Volberg and P. Yuditskii. Asymptotics of the
Best Polynomial approximations of IxIp and of the best Laurent Polynomial Approximation
of sgn (x) on two symmetric intervals.

10

[5] Hans H Hosenthein. Nth order Flat Approximation of the Signum function by a Polyno-
mial. NASA TN D-6688,March 1972.

[6] Edward Wilson and Stephen M. Rock. Gradient-based parameter optimization for
systems containing discrete-valued functions. International Journal of Robust and Nonlinear
Control 2002, Int. J. Robust Nonlinear Control 2002; 12:10091028 (DOI: 10.1002/rnc.729)

[7] Edward Wilson. Backpropagation Learning for Systems with Discrete-Valued Functions.
Proceedings of the World Congress on Neural Networks, San Diego, California, June 1994.

[8] Gang Ji and Jeff Bilmes. Necessary Intransitive Likelihood Ratio Classifiers. UWEE
Technical Report Number UWEETR-2002-0014.

[9] Platt,J. Fast training of Support Vector Machines using sequential minimal opti-
mization,in B.Scholkopf,C.J.C Burges,and A.J.Smola(Eds.),Advances in Kernel Methods-
Support Vector Learning,Cambridge,MA,MIT Press,1999,pp,185-208.

[10] Klaus Schittkowski. On the convergence of a Sequential Quadratic Programming Method
with an Augmented Lagrangian Line Search FunctionJanuary 1982.

[11] Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin A Practical Guide to Support
Vector Classfication. http://www.csie.ntu.edu.tw/ cjlin Oct2,2008.

[12] http://cmp.felk.cvut.cz/cmp/software/stprtool/stprtool.pdf

[13] Private communication Marcus M. Edvall.Tomlab Optimization.http://tomopt.com/

[14] Little MA, McSharry PE, Roberts SJ, Costello DAE, Moroz IM. ’Exploiting
Nonlinear Recurrence and Fractal Scaling Properties for Voice Disorder Detection’ BioMed-
ical Engineering OnLine 2007, 6:23 (26 June 2007).

[15] Asuncion, A. and Newman, D.J. UCI Machine Learning Repository
[http://www.ics.uci.edu/ mlearn/MLRepository.html]. Irvine, CA: University of Cali-
fornia, School of Information and Computer Science.(2007)

11

