
ADMM based Scalable Machine Learning on Spark

Sauptik Dhar
Research and Technology Center

Robert Bosch LLC
Palo Alto, CA 94304, USA
sauptik.dhar@us.bosch.com

Congrui Yi
Department of Statistics and Actuarial Science

University of Iowa
Iowa City, IA 52242, USA

congrui-yi@uiowa.edu

Naveen Ramakrishnan
Research and Technology Center

Robert Bosch LLC
Palo Alto, CA 94304, USA

naveen.ramakrishnan@us.bosch.com

Mohak Shah
Research and Technology Center

Robert Bosch LLC
Palo Alto, CA 94304, USA
mohak.shah@us.bosch.com

Abstract—Most machine learning algorithms involve solving
a convex optimization problem. Traditional in-memory convex
optimization solvers do not scale well with the increase in
data. This paper identifies a generic convex problem for most
machine learning algorithms and solves it using the Alternating
Direction Method of Multipliers (ADMM). Finally such an
ADMM problem transforms to an iterative system of linear
equations, which can be easily solved at scale in a distributed
fashion. We implement this framework in Apache Spark and
compare it with the widely used Machine Learning LIBrary
(MLLIB) in Apache Spark 1.3.

Keywords-Distributed Optimization; ADMM; Spark; ML-
LIB;

I. INTRODUCTION

Convex optimization lies at the core of machine learn-
ing algorithms like, linear regression, logistic regression,
support vector machines etc. With the advent of big-data,
the traditional machine learning algorithms face critical
challenges with the continually increasing volume of data.
This motivates the need for research in scalable systems and
algorithms, particularly suited for solving general classes
of convex optimization problems that would in turn help
scale machine learning algorithms. There are two aspects of
this research which need to be considered jointly as they
play a crucial role in the performance of any solution to
optimization solvers for the big data setting: 1. Algorithms
for distributed optimization, and 2. Systems for big data
framework. We briefly describe the state-of-the-art for these
aspects and the corresponding choices we make for this
paper in the following subsections.

A. Algorithms

Recent years have seen a deluge of novel optimization
algorithms for solving big-data machine learning problems.

S. Dhar and C. Yi contributed equally. This work was done during the
course of C. Yi’s internship at Robert Bosch LLC, Palo Alto, CA 94304,
USA

Majority of those approaches follow a distributed frame-
work, and can be broadly categorized as:

1) variations of stochastic gradient descent (SGD) [1],
[2],

2) Alternating Direction Method of Multipliers
(ADMM) [3]–[6],

3) approaches that utilize functional approximation based
on local portion of the data [7]–[9],

4) Bayesian approaches [10], and
5) Distributed Delayed Optimization [11].

Among all, SGD based approaches have been the most
influential and widely used. For example, the Machine
Learning Library (MLLIB) packaged with the Spark 1.3 dis-
tribution uses SGD [12]. However, current ongoing research
and advancements in ADMM presents it as a competitive
candidate for such distributed problems [13]–[15]. Unfortu-
nately, very few tools offer any ADMM based distributed
machine learning solutions [14], [15]. In this paper we
explore the ADMM approach to tackle a generic convex
problem, which in turn can be used to solve many machine
learning algorithms. We show that, at the heart of the
ADMM algorithm is a Quadratic Program (QP) which can
be solved in a distributed fashion. The proposed framework
provides a scalable solution for a gamut of Machine Learn-
ing algorithms (see table I); and is comparable (in terms of
computational complexity), to publicly available solutions
provided by MLLIB [12].

B. Systems

Another important aspect is the big-data framework used.
A variety of architectures have been proposed for Big-
Data analytics. On the basis of storage and computation
technology, it can be broadly categorized as,

1) Single-node in-memory analytics where the entire
data is loaded and processed in the memory of a
single computer. Such systems require huge amount

of memory. Typical tools that use such an approach
include, MATLAB [16], R [17], KNIME [18], Rapid
Miner [19], Weka [20] etc.

2) In-disk analytics where the entire data resides in disk,
and chunks of it are loaded and processed in memory.
Typical tools that use such an approach are, Revo-
lution R (ScaleR) [21], MATLAB (memmap) [16],
GraphLab [22] etc.

3) In-database analytics where the data is stored in a
database and the processing is taken to the database
where the data resides. Typical tools that use such an
approach are, Oracle Data Miner [23], HP Vertica [24],
Pivotal [25] etc.

4) Distributed Storage and Computing systems, where the
data resides in multiple nodes, and the computation
is distributed among those nodes. Typical tools that
use such an approach are, Rhadoop (Map-Reduce on
Hadoop File System a.k.a HDFS) [26], Mahout (Map-
Reduce on HDFS) [27], Apache Spark (distributed
in-memory analytics with storage on HDFS) [28],
Alpine Data Labs (Map-Reduce/Spark with storage on
HDFS) [29] etc.

In this paper we use the Spark computing framework [28]
over data stored in HDFS, as it offers several advantages
over MapReduce. Specifically, the caching mechanism and
lazy execution model of Spark makes it very fast and fault-
tolerant, especially for iterative tasks compared to MapRe-
duce which needs to write all intermediate data to the disk.
For details on the Spark framework and its performance
comparison to MapReduce please refer to [28].

Lately, there has been enormous amount of research on
ADMM and it’s modifications typically directed towards
faster convergence under specific conditions [3], [15]. This
paper does not provide new modifications to the ADMM
algorithm. The main contribution of this paper includes
identifying a generic optimization problem applicable to a
gamut of machine learning algorithms (see table I), and
using the standard ADMM algorithm to solve the optimiza-
tion in a distributed fashion in Spark. Availability of such
a repository of machine learning algorithms in Spark, as
an alternative to the currently available Machine Learning
LIBrary (MLLIB) [12], can be very useful to the big-data
analytics community. We provide the update steps for all
the algorithms (in table I), and show that at the core of the
ADMM updates is a QP which can be easily solved in a
distributed fashion. We benchmark the performance of this
generic solver (implemented on Spark 1.3), and compare
it with the publicly available Machine Learning LIBrary
(MLLIB) for big-data problems.

The rest of the paper is organized as follows. In section
II, we introduce the basics of ADMM following [3]. In
section III we present the generic optimization problem
and provide ADMM updates for a number of machine
learning algorithms (shown in Table I). Section IV presents

performance comparison of our ADMM implementation and
MLlib. Finally we provide the conclusions in Section V.

II. ALTERNATING DIRECTION METHOD OF MULTIPLIERS

Alternating Direction Method of Multipliers (ADMM)
was first proposed in the mid-70s by Glowinski & Mar-
rocco [6] and Gabay & Mercier [4] as a general convex
optimization algorithm. Lately there has been tremendous
amount of research in ADMM due to its applicability
to the distributed data setting. As an outcome of those
research, ADMM presents itself as a competitive technique
for distributed optimization. A critical feature of the ADMM
formulation is that it divides an optimization problem into
smaller sub-problems and enables solutions to them in a
distributed setting. Next we present a brief description of
the ADMM methodology. A more detailed description can
be found in [3].

A. Basic Form

Let’s consider optimization problems of the following
form 1:

min
w,z

f(w) + g(z)

s.t. Aw +Bz = c
(1)

We form the augmented Lagrangian given below,

Lρ(w, z,u) = f(w) + g(z) + u>(Aw +Bz− c)

+
ρ

2
‖Aw +Bz− c‖22,

(2)

where, u is the lagrange multiplier. Note that, the aug-
mented Lagrangian contains a quadratic penalty term in
addition to the usual Lagrangian which is controlled by the
penalization factor ρ (see [3] for details). Then the ADMM
iterations to solve eq. 1 are,

wk+1 = argmin
w

Lρ(w, z
k,uk)

zk+1 = argmin
z

Lρ(w
k+1, z,uk) (3)

uk+1 = uk + ρ(Awk+1 +Bzk+1 − c)

For practical purposes, a more widely used version is the
scaled ADMM. Typically in that case, the linear and the
quadratic terms of the primal residual r = Aw + Bz − c
in 2 are combined and the resulting ADMM updates become,

wk+1 = argmin
w

f(w) +
ρ

2
‖Aw +Bzk − c + uk‖22

zk+1 = argmin
z

g(z) +
ρ

2
‖Awk+1 +Bz− c + uk‖22

uk+1 = uk + (Awk+1 +Bzk+1 − c) (4)

1Note that, we use lowercase bold alphabets for representing vectors
throughout the paper.

For the rest of the paper we shall use the scaled version of
ADMM following [3].

Note that for a problem where the objective function can
be decomposed as a sum of two functions (f(w), g(z) in
eq. 1), ADMM provides a framework to solve two separate
sub-problems (w-step, z-step of eq. 3) to obtain the final
solution.

B. Consensus ADMM

Next we present a specific form called the consensus
ADMM. This serves as a very useful approach to solve
many problems in a distributed setting (as shown later in
III for linear SVM). For this case, consider an optimization
formulation where the f(w) in eq. 1 can be decomposed into
M independent parts i.e.

∑M
t=1 ft(wt). Then the consensus

ADMM can be written as,

min
w1,...,wM,z

f1(w1) + . . .+ fM (wM) + g(z)

subject to Aw1 +Bz = c (5)
...

AwM +Bz = c

Note that, different from eq.1, here we solve M in-
dependent sub-problems. The equality constraint is called
the global consensus constraint since it requires all the
w1 . . .wM vectors to have a consensus with a global vari-
able z. This results in the following ADMM steps (in its
scaled form) (see [3] for details),

wk+1
t = argmin

wt

ft(wt) +
ρ

2
‖Awt +Bzk − c− ukt ‖22

zk+1 = argmin
z

g(z) +
ρ

2

∑
‖Awk+1

t +Bz− c + ukt ‖22

uk+1
t = ukt +Awk+1

t +Bzk+1 − c (6)

Compared to eq 4, wt’s in eq 6 are updated independently
and can be easily parallelized.

III. ADMM BASED DISTRIBUTED MACHINE LEARNING
ALGORITHMS

In this section we discuss how we can utilize this ADMM
framework to solve many machine learning algorithms. Un-
der inductive settings a typical supervised machine learning
problem involves estimating a function from noisy train-
ing samples (xi, yi)

N
i=1, N= no. of training samples [30],

[31]. There are two common types of supervised learning
problems:-
• Regression or real-valued function estimation, y =
f̂(x). In this case we have y ∈ < and x ∈ <D,
D= dimension of the input space. The quality of
prediction/estimation is measured by a user-defined
loss function L(f̂w,b(xi), yi). Typical examples include,
squared loss, ε-insensitive loss etc.

• Classification or estimation of indicator function, y =
f̂(x). In this case we have y ∈ {+1,−1} and x ∈ <D,
D= dimension of the input space. As before, the quality
of prediction/estimation is measured by a user-defined
loss function L(f̂w,b(xi), yi) like, logit loss, hinge loss,
0/1-loss etc.

A common optimization problem that is solved for both the
supervised learning problems discussed above is:

min
w,b

1

N

N∑
i=1

L(f̂w,b(xi), yi) + λR(w) (7)

Here N is the total number of samples used to estimate the
model (f̂w,b) parameterized by w ∈ <D and b ∈ <. In this
paper, we limit ourselves to linear parameterizations where,
f̂w,b(x) = w>x + b . L is a convex loss which measures
the discrepancy between the model estimates and their true
values/labels. R is a convex regularizer that penalizes the
model complexity for better generalization on unseen future
test samples.

In this paper we propose to solve a general class of
optimization problem shown in eq. 7, and use this solver
for many popular supervised machine learning algorithms
(see Table I). We provide the ADMM updates for each of
these algorithms and show that, at the heart of the ADMM
updates for eq.7 is a QP problem during the w-step which
has the following form,

min
w

1

2
w>Pw − q>w

subject to l � w � u
(8)

We adopt the following strategies to solve this QP,

1) Unconstrained case (i.e. l = −∞, u =∞)
In this case we use a direct matrix inversion, w∗ =
P−1q. Note that, for high-dimensional problems such
matrix-inversion operations could become a bottle-
neck. However, more advanced QP solvers can be
added in future versions of this work, e.g. ones based
on conjugate gradient.

2) Constrainined case (i.e. l, u are finite)
We solve the QP problem using L-BFGS [32] method
and apply warm-start strategy, i.e. initialize with w
value from previous iteration.

Next we present the ADMM updates for the different ML
algorithms in Table I.

A. L1/L2 Regression

In this sub-section, we consider the more generic elastic-
net regularizer [33] with the least squares loss. The problem
formulation is:-
Given input training data (xi, yi)

N
i=1 with x ∈ <D and y ∈

<, linear regression with elastic net regularization solves the

Table I
MACHINE LEARNING ALGORITHMS IN THE FORM OF EQ. 7

Methods Loss Functions (with f̂w,b(x) = w>x+ b) Regularizer

L1,L2,L1-L2 regularized linear regression least-square: 1
2N

∑
i(yi − b− x>i w)2

L1,L2,L1-L2 regularized logistic regression logit loss: 1
N

∑
i log(1 + e−yi(x

>
i w+b)) α‖w‖1 + (1− α) · 1

2
‖w‖22

L1,L2,L1-L2 regularized linear SVM hinge loss: 1
N

∑
i

(
1− yi(x>i w + b)

)
+

with, α ∈ [0, 1]

Group-Lasso 1
2N

∑
i(yi − b− x>i w)2

∑G
k=1

√
dk
(
α‖wk‖2 + (1− α) · 1

2
‖wk‖22

)
G:= total groups, dk:= size of the kth group

following optimization:

minw λ

D∑
j=1

δj

{
α |wj |+ (1− α) · wj

2

2

}
(9)

+
1

2N

N∑
i=1

(yi − xi
>w)

2

In this form we can include the intercept in the optimization
problem by augmenting a column of ones to the input
samples, i.e., x̂ = [x, 1](D+1)×1, and solving for ŵ =
[w, b](D+1)×1.

Note that, the current form is more generic and can
be easily adapted to solve both lasso (α = 1) and ridge
regression (α = 0), in addition to elastic net [33]. Further, δj
provides additional flexibility to this optimization problem,
• As discussed in [31], penalization of the intercept

would make the algorithm depend on the origin chosen
for y. Hence, we can avoid that by setting δD+1 = 0.

• In addition, we can incorporate apriori information to
the penalization term. A special case is the group-lasso,
where we set δj =

√
dk for the kth group of size dk.

Here, the ADMM formulation is given as,

min
w,z

1

2N

N∑
i=1

(yi − xi
>w)

2
(10)

+λ

D∑
j=1

δj

{
α |zj |+ (1− α) · zj

2

2

}
subject to w − z = 0.

and the corresponding updates are,

wk+1 = argmin
w

1

2N

N∑
i=1

(yi − xi
>w)

2

+
ρ

2
‖ w − zk + uk ‖22 (11)

= argmin
w

1

2
w>Pw − q>w

= P−1q

P = 1
N

N∑
i=1

xix
>
i + ρID and q = 1

N

N∑
i=1

yixi + ρ(zk − uk)

zk+1 = argmin
z

λ
∑

j

δj

{
α |zj |+ (1− α) ·

z2j
2

}
+

ρ

2
‖wk+1 − z + uk‖22 (12)

zk+1
i =

cκj(w
k+1
j + ukj)

1 + λδj(1− α)/ρ

where κj = λδjα/ρ and Sκ(t) =
(
1− κ

|t|
)
+
t = (t− κ)+ −

(−t− κ)+ is the soft-thresholding operator and,

uk+1 = uk + wk+1 − zk+1 (13)

As seen above, for big-data problems w-step poses as
the main bottleneck. This however can be scaled through
distributed computation of

∑
i xix

T
i and

∑
i yixi. Finally,

the w-update is transformed to a matrix inversion problem
as shown in eq. 11. The z,u - updates can be easily obtained
as shown in eq. 12 and 13.

B. Group-Lasso

Next we consider a very specific method called
the Group Lasso. In this case we assume that the
apriori grouping information is available to form a
composite weight vector of G groups, denoted as
w = [w

(1)
1 · · ·w

(1)
d1︸ ︷︷ ︸

group 1

, . . . , w
(g)
1 · · ·w

(g)
dg︸ ︷︷ ︸

group g

, . . . , w(G)] , where

w
(g)
k =kth feature of the gth group, w(G) = b (the intercept),

dg = size of the gth group. Then the group-lasso regularized
linear regression model is given by,

min
w

1
2N

∑N
i=1(yi − x>i w)2 (14)

+ λ
∑G
g=1 δg

{
α‖wg‖2 + (1− α) · 12‖wg‖

2
2

}
In practice, we use δg =

√
dg and δG = 0 for the

intercept. Following the same procedure as above, we get
the w-update and u-update which are exactly the same as
in the elastic-net regularized case, the only difference is the

z-update which is given as,

zk+1
g =

Sκg
(wk+1

g + ukg)

1 + λδg(1− α)/ρ
(15)

where κg = λδgα/ρ, and Sκ is the block soft-thresholding
operator Sκ(t) =

(
1− κ

‖t‖2

)
+
t

C. L1/L2-Logistic Regression

In this sub-section, we switch towards classification prob-
lems. Specifically, we consider the logistic regression clas-
sification method. Given input training data (xi, yi)

n
i=1 with

x ∈ <D and y ∈ {−1,+1}, the logistic regression model is
estimated by solving the following optimization problem:

min
w

1
N

∑N
i=1 log(1 + e−yix

>
i w) (16)

+λ
D∑

j=1

δj

{
α |wj |+ (1− α) · w

2
j

2

}
(17)

The corresponding ADMM form is as follows:

min
w,z

1
N

∑N
i=1 log(1 + e−yix

>
i w) (18)

+λ
D∑

j=1

δj

{
α |zj |+ (1− α) · zj

2

2

}
subject to w − z = 0
Same as before we use x̂ = [x, 1](D+1)×1, with ŵ =
[w, b](D+1)×1. The resulting ADMM updates are,

wk+1 = argmin
w

1

N

∑
i

log(1 + e−yix
>
i w) (19)

+
ρ

2
‖w − zk + uk‖22

zk+1 = argmin
z

λ
∑

j

δj

{
α |zj |+ (1− α) ·

z2j
2

}
+

ρ

2
‖wk+1 − z + uk‖22

uk+1 = wk+1 − zk+1 + uk

Note that, the z and u updates are same as in eq 12 and 13
respectively. For the w-step we use Newton updates given
below. Let,

l(w) =
1

N

∑
i

log(1 + e−yix
>
i w)

+
ρ

2
‖w − zk + uk‖22

then,

5wl(w) = − 1

N

∑
i

yi(1− pi)xi + ρ(w − zk + uk),

52
wl(w) =

1

N

∑
i

pi(1− pi)xix>i + ρI

where, pi = 1�(1 + e−w
>x). Hence, the optimal wk+1 can

be obtained through the iterative Algorithm 1

Algorithm 1: Iterative Algorithm for wk+1

Input: wk, zk, uk

Output: wk+1

initialize v(0) ← wk, j ← 0 ;
while not converged do

p
(j)
i ← 1�(1 + e−x

>
i v(j)

);
P (j) ← 1

N

∑
ip

(j)
i (1− p(j)i)xix

>
i + ρI ;

q(j) ← − 1
N

∑
iyi(1−p

(j)
i)xi+ρ(v(j−1)−zk+uk);

v(j+1) ← v(j) − (P (j))−1q(j) (distributed) ;
j ← j + 1;

return wk+1 ← v(j);

D. Linear SVM

Finally we show how to use this similar framework
to solve Linear SVM. Note that, a detailed analysis for
distributed SVM using ADMM has already been shown in
[15]. However, even though the technicalities are similar,we
solve a slightly different problem (hinge loss + elastic net),
and show it for completeness. Finally, different from [15],
[34], we rather use an L-BFGS approach to solve each sub-
problem as discussed next.

The SVM-problem formulation is provided next, Given
input training data (xi, yi)

n
i=1 with x ∈ <D and y ∈

{−1,+1}, the elastic-net regularized linear SVM solves the
following optimization problem:

min
w

C
N

∑N
i=1(1− yix>i w)+ (20)

+
D∑
j=1

δj

{
α|wj |+ (1− α) · w

2
j

2

}

As again, α ∈ [0, 1] controls the effect of L1 vs. L2
regularization and δD = 0 is used to avoid regularization in
intercept space. Here, unlike the previous models the hinge
loss in SVM is nonsmooth. To tackle this issue, we use
the consensus ADMM and rather solve smaller SVM-like
sub-problems as also shown in [15]. The advantage to this
approach is that each smaller SVM-like sub-problem can be
now solved in the dual space using a QP solver. This is
shown next.

The consensus ADMM formulation for the problem is,

min
w1,...,wM ,z

C
N

∑M
t=1

∑
i∈Bt

(1− yix>i wt)+

+
∑
j

δj

{
α |zj |+ (1− α) · z

2
j

2

}
(21)

subject to wt − z = 0, t = 1, . . . ,M

and the corresponding updates are,

wk+1
t = argmin

wt

C

N

∑
i∈Bt

(1− yix>i wt)+

+
ρ

2
‖wt − zk + ukt ‖22, t = 1, . . . ,M (22)

zk+1
j =

Sκj

(
1
M

∑M
t=1(wk+1

tj + uktj)
)

1 + λδj(1− α)/ρ
, j = 1, . . . , D

uk+1
t = ukt + wk+1

t − zk+1, t = 1, . . . ,M

Note that now the w-update is an SVM like problem on
a subset Bt. This can be solved in the dual form as shown
next.

For each subset Bt,

wk+1
t = argmin

wt

C

N

∑
i∈Bt

ξi +
ρ

2
‖wt − zk + ukt ‖22

s.t. yix>i w ≥ 1− ξi, ξi ≥ 0, i ∈ Bt (23)

This transforms to the following QP (with constraints) given
below,

min
α

1
2α
>Pα + q>α (24)

s.t. 0 ≤ αi ≤ C/N, i ∈ Bt

with,

Pij = yiyjx
>
i xj

qi = yix
>
i (zk − ukt)− 1

We use L-BFGS to solve the above QP and finally obtain,

wk+1 =
1

ρ

∑
i∈Bt

αk+1
i yixi + zk − ukt (25)

as the final SVM solution. This can also be used to accom-
modate for non-linear SVM following [35].

IV. EXPERIMENTS AND RESULTS

Next we provide the performance comparison of our
implemented algorithms with the publicly available MLLIB
library packaged with Apache Spark 3.0.

A. System Configuration

The Hadoop cluster configuration for our experiments is
provided below,

– No. of Nodes = 6 (Hadoop Version - Apache 1.1.1)
– No. of cores (per node) = 12 core (Intel Xeon @

3.20GHz)
– RAM size (per node) = 32 GB
– Hard Disk size (per node) = 500 GB

For implementation we use the python interface (pyspark)
already available in [28]. Further, our spark framework has
been configured based on the recommendations available at
[36]. i.e.

– spark.num.executors = 17
– spark.executor.memory = 6 GB
– spark.driver.memory = 4 GB
– spark.driver.maxResultSize = 4 GB

B. Datasets

We generate synthetic datasets of different sizes for our
experiments. The datasets are generated to capture the
sparsity as well as the grouping behavior of the different
methods. The dataset used for the classification methods is
described below,
Dataset for Classification Problems: In this case x ∈ <D is
generated from a multivariate normal distribution N (0,Σ).
Here,

Correlation Matrix,Σ =

1 0.2 0.2

0.2
. . . 0.2

0.2 0.2 1

10

0

0 . . .

G∗10

is block diagonal, and controls the grouping properties of
the problem. We fix the number of variables per group to
10. The pairwise correlation within each group is 0.2, and
that between each group is 0. The y - value (class label) is
generated as shown below,

y = sign(w>x + ε) (26)

where, w controls the sparsity of the problem. For this paper
we set the sparsity parameter to 0.8, i.e. 80% of the groups
have zero weight vector. For the remaining 20%, the weight
vectors are alternated between +1/-1. i.e.

w = [1, 1, 1, 1, 1,−1,−1,−1,−1,−1︸ ︷︷ ︸
group 1

, . . .

. . . 1, 1, 1, 1, 1,−1,−1,−1,−1,−1︸ ︷︷ ︸
group g

, . . .

. . . 0, 0, 0, . . .︸ ︷︷ ︸
remaining 80 % sparse groups

]

Further we add a gaussian noise to the model ε ∼ N (0, 1).
The above settings are used to generate two separate data of
different sizes (shown below),

– No. of training samples (N) = 2000000 and Dimension
of each samples (D) = 100,

– No. of training samples (N) = 20000000 and Dimension
of each samples (D) = 100

The generated data is saved in a comma separated format,
which takes upto (approx.) 5 GB and 50 GB of disk space
respectively.
Dataset for Regression Problems: The generation of this

Table II
COMPUTATION TIME COMPARISON BETWEEN ADMM VS. MLLIB (IN SEC) FOR CLASSIFICATION METHODS

Methods ADMM MLLIB

Data Set size = 5 GB with N = 2000000, D = 100

L2- logistic regression (λ = 0.1, α = 0) 157.57 (0.04) 139.68 (2.06)

L1- logistic regression (λ = 0.1, α = 1) 157.05 (1.54) 266.9 (169.16)

L1+L2- logistic regression (λ = 0.1, α = 0.5) 155.2(1.23) Not available

Data Set size = 50 GB with N = 20000000, D = 100

L2- logistic regression (λ = 0.1, α = 0) 13937.3 (10.34) 14045.7 (411.78)

L1- logistic regression (λ = 0.1, α = 1) 15381.8 (5.59) 13155.2 (307.60)

L1+L2- logistic regression (λ = 0.1, α = 0.5) 15472.1 (13.25) Not available

data follows exactly the same as in classification problems;
except that the y-values are generated as below,

y = w>x + 2 + ε (27)

As before we use two separate data of different sizes,

– No. of training samples (N) = 2000000 and Dimension
of each samples (D) = 100,

– No. of training samples (N) = 20000000 and Dimension
of each samples (D) = 100

C. Results

Here we provide comparison of the computation times for
our ADMM implementation vs. MLLIB for both classifica-
tion and regression problems. In general, the computation
time of the ADMM based methods depend heavily on a
number of parameters like , ρ - update (see [3], [13]), con-
vergence criteria etc. For simplicity, we follow the ρ-update
suggested in (eq 3.13 of [3]). Further, our current stopping
criteria dictates convergence of the solution, when the primal
and dual residual conjointly goes below a tolerance value
of 10−3 (following [3]). On the other hand, MLLIB does
not provide any control on the convergence criteria. Hence
for our experiments we keep the default settings. Tables II
amd III provides the average computation times (in seconds)
over three runs of the experiment for the classification and
regression problems respectively. The standard deviation are
provided in parenthesis. In the current version of the paper
our results are limited to L1/L2-Logistic and L1/L2-Linear
regression. Additional results for L1/L2-SVM and Group
Lasso shall be provided in a extended version of the paper.

Based on our results in Table II and III, the ADMM
implementation performs similar to the MLLIB in terms

of computation speed except for the regression problem 2.
For the regression problem we report the computation time
for one iteration of the ADMM updates. This approximate
solution still outperfomed the MLLIB’s solution in terms
of accuracy. Hence, the current ADMM based framework
provides as a viable alternative to the SGD based approach
implemented in MLLIB. In addition, this framework sup-
ports a wide range of scalable ML algorithms, which can
prove as an useful arsenal for data-scientists to tackle big-
data problems.

V. CONCLUSION

In this paper we present a generic convex optimization
problem for most ML algorithms. We identify ADMM as
a viable approach to solve this generic convex optimization
problem, and derive the ADMM updates specific to each ML
algorithms (listed in Table I). The current paper provides the
update steps for linear parameterization. However, it can be
easily extended to non-linear cases following [14]. As shown
in section III, at the heart of the ADMM updates lies a QP
which can be solved in a distributed fashion. Our results
show that this ADMM based approach performs similar
in comparison to the publicly available MLLIB in terms
of computation speed. This presents ADMM as a viable
alternative to MLLIB for big-data problems, with the added
advantage of more machine learning algorithms.

Finally, we note that the current implementation is limited
by the dimension of the problem; as it needs to solve a
QP in the w - update. This motivates the need for future

2The MLLIB package distributed with Spark 1.3 provides incorrect
implementation of the original Logistic Regression algorithm. A correction
has been made in the latest Spark 1.4 version (see [37]). This has not
been included in this paper. However, the Spark 1.3 ’s implementation can
still be considered as an approximate comparison representative of the SGD
approach. Further, the convergence criteria for MLLIB cannot be controlled.
In terms of accuracy, for both classification and regression problems, the
MLLIB tool provided sub-optimal solutions.

Table III
COMPUTATION TIME COMPARISON BETWEEN ADMM VS. MLLIB (IN SEC) FOR REGRESSION METHODS

Methods ADMM MLLIB

Data Set size = 5 GB with N = 2000000, D = 100

L2- linear regression (λ = 0.1, α = 0) 425.09 (17.26) 429.83(190.02)

L1- linear regression (λ = 0.1, α = 1) 416.95 (3.5) 444.79 (210.22)

L1+L2- linear regression (λ = 0.1, α = 0.5) 409.50(2.5) Not available

Data Set size = 50 GB with N = 20000000, D = 100

L2- linear regression (λ = 0.1, α = 0) 4209.95(10.5) 29244.43(100.12)

L1- linear regression (λ = 0.1, α = 1) 4233.13 (6.89) 23526.45(200.23)

L1+L2- linear regression (λ = 0.1, α = 0.5) 4150.81 (10.25) Not available

research towards scalable options for the QP problem. In
addition to that, there has been a gamut of research towards
newer ADMM update strategies for faster convergence of the
algorithm [3], [13]. These advanced strategies have not been
included in this version of the paper and can be extended as
future work.

ACKNOWLEDGMENT

The authors would like to thank Juergen Heit from
Research and Technology Center, Robert Bosch LLC; for
multiple discussions on the Spark configurations for the
experimental settings. They would also like to thank Max
Rizvanov for his support with the Hadoop cluster manage-
ment.

REFERENCES

[1] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild: A lock-
free approach to parallelizing stochastic gradient descent,” in
Advances in Neural Information Processing Systems, 2011,
pp. 693–701.

[2] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola, “Paral-
lelized stochastic gradient descent,” in Advances in Neural
Information Processing Systems, 2010, pp. 2595–2603.

[3] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein,
“Distributed optimization and statistical learning via the al-
ternating direction method of multipliers,” Foundations and
Trends R© in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.

[4] D. Gabay and B. Mercier, “A dual algorithm for the solution
of nonlinear variational problems via finite element approxi-
mation,” Computers & Mathematics with Applications, vol. 2,
no. 1, pp. 17–40, 1976.

[5] T. Goldstein, B. ODonoghue, and S. Setzer, “Fast alternating
direction optimization methods,” CAM report, pp. 12–35,
2012.

[6] R. Glowinski and A. Marroco, “Sur l’approximation, par
éléments finis d’ordre un, et la résolution, par pénalisation-
dualité d’une classe de problèmes de dirichlet non linéaires,”
ESAIM: Mathematical Modelling and Numerical Analysis-
Modélisation Mathématique et Analyse Numérique, vol. 9,
no. R2, pp. 41–76, 1975.

[7] D. Mahajan, S. S. Keerthi, S. Sundararajan, and L. Bottou,
“A functional approximation based distributed learning algo-
rithm,” arXiv preprint arXiv:1310.8418, 2013.

[8] O. Shamir, N. Srebro, and T. Zhang, “Communication effi-
cient distributed optimization using an approximate newton-
type method,” arXiv preprint arXiv:1312.7853, 2013.

[9] C. H. Teo, S. Vishwanthan, A. J. Smola, and Q. V. Le,
“Bundle methods for regularized risk minimization,” The
Journal of Machine Learning Research, vol. 11, pp. 311–365,
2010.

[10] X. Zhang, “Probabilistic methods for distributed learning,”
Ph.D. dissertation, Duke University, 2014.

[11] A. Agarwal and J. C. Duchi, “Distributed delayed stochastic
optimization,” in Advances in Neural Information Processing
Systems, 2011, pp. 873–881.

[12] X. Meng, J. K. Bradley, B. Yavuz, E. R. Sparks,
S. Venkataraman, D. Liu, J. Freeman, D. B. Tsai, M. Amde,
S. Owen, D. Xin, R. Xin, M. J. Franklin, R. Zadeh,
M. Zaharia, and A. Talwalkar, “Mllib: Machine learning in
apache spark,” CoRR, vol. abs/1505.06807, 2015. [Online].
Available: http://arxiv.org/abs/1505.06807

[13] R. Nishihara, L. Lessard, B. Recht, A. Packard, and M. I.
Jordan, “A General Analysis of the Convergence of ADMM,”
ArXiv e-prints, Feb. 2015.

[14] V. Sindhwani and H. Avron, “High-performance Kernel Ma-
chines with Implicit Distributed Optimization and Random-
ization,” ArXiv e-prints, Sep. 2014.

[15] C. Zhang, H. Lee, and K. G. Shin, “Efficient distributed linear
classification algorithms via the alternating direction method
of multipliers,” in International Conference on Artificial In-
telligence and Statistics, 2012, pp. 1398–1406.

[16] MATLAB, version 8.5 (R2015a). Natick, Massachusetts:
The MathWorks Inc., 2015.

[17] R Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna,
Austria, 2013. [Online]. Available: http://www.R-project.org/

[18] M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kötter,
T. Meinl, P. Ohl, C. Sieb, K. Thiel, and B. Wiswedel,
“KNIME: The Konstanz Information Miner,” in Studies in
Classification, Data Analysis, and Knowledge Organization
(GfKL 2007). Springer, 2007.

[19] “Rapidminer,” https://rapidminer.com/, accessed: 2015-06-30.

[20] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten, “The WEKA data
mining software: An update,” SIGKDD Explorations,
vol. 11, no. 1, pp. 10–18, 2009. [Online]. Avail-
able: http://www.sigkdd.org/explorations/issues/11-1-2009-
07/p2V11n1.pdf

[21] “Revolution r,” http://www.revolutionanalytics.com/revolution-
r-enterprise, accessed: 2015-06-30.

[22] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and
J. M. Hellerstein, “Graphlab: A new parallel framework for
machine learning,” in Conference on Uncertainty in Artificial
Intelligence (UAI), Catalina Island, California, July 2010.

[23] “Oracle data miner,” http://www.oracle.com, accessed: 2015-
06-30.

[24] “Hp vertica,” http://www.vertica.com/, accessed: 2015-06-30.

[25] “Pivotal,” http://pivotal.io/, accessed: 2015-06-30.

[26] “Revolution analytics rhadoop,”
https://github.com/RevolutionAnalytics/RHadoop/wiki,
accessed: 2015-06-30.

[27] Apache Software Foundation. Apache mahout:: Scalable
machine-learning and data-mining library. [Online].
Available: http://mahout.apache.org

[28] “Apache spark,” https://spark.apache.org/, accessed: 2015-06-
30.

[29] “Alpine data labs,” http://alpinenow.com/, accessed: 2015-06-
30.

[30] V. Cherkassky and F. M. Mulier, Learning from Data: Con-
cepts, Theory, and Methods. Wiley-IEEE Press, 2007.

[31] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of
Statistical Learning, ser. Springer Series in Statistics. New
York, NY, USA: Springer New York Inc., 2001.

[32] D. P. Bertsekas, Nonlinear Programming. Belmont, MA:
Athena Scientific, 1999.

[33] H. Zou and T. Hastie, “Regularization and variable selection
via the elastic net,” Journal of the Royal Statistical Society,
Series B, vol. 67, pp. 301–320, 2005.

[34] C.-Y. Lin, C.-H. Tsai, C.-P. Lee, and C.-J. Lin, “Large-scale
logistic regression and linear support vector machines using
spark,” in Big Data (Big Data), 2014 IEEE International
Conference on. IEEE, 2014, pp. 519–528.

[35] A. Rahimi and B. Recht, “Random features for large-scale
kernel machines,” in Advances in neural information process-
ing systems, 2007, pp. 1177–1184.

[36] “How-to: Tune your apache spark jobs (part 2),”
http://blog.cloudera.com/blog/2015/03/how-to-tune-your-
apache-spark-jobs-part-2/, accessed: 2015-06-30.

[37] “Mllib (spark) question.” https://www.mail-
archive.com/user@spark.apache.org/msg32244.html,
accessed: 2015-06-30.

