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Development and Evaluation of Cost-Sensitive 
Universum SVM  

Sauptik Dhar and Vladimir Cherkassky, Fellow, IEEE. 

Abstract— Many machine learning applications involve analysis of high-dimensional data, where the number of input features is 

larger than/comparable to the number of data samples. Standard classification methods may not be sufficient for such data, and 

this provides motivation for non-standard learning settings. One such new learning methodology is called Learning through 

Contradiction or Universum support vector machine (U-SVM) [1, 2].  Recent studies [2-10] have shown U-SVM to be quite 

effective for sparse high-dimensional data sets. However, all these earlier studies have used balanced data sets with equal 

misclassification costs. This paper extends the U-SVM formulation to problems with different misclassification costs, and 

presents practical conditions for the effectiveness of this cost-sensitive U-SVM. Several empirical comparisons are presented to 

validate the proposed approach. 

Index Terms— Cost-sensitive SVM, learning through contradiction, misclassification costs, Universum SVM. 

——————————      —————————— 

1 INTRODUCTION 

any modern machine learning applications involve 

predictive modeling of high-dimensional data, where 

the number of input features exceeds the number of data 

samples used for model estimation. Such high-dimensional 

data sets present new challenges for classification methods.  

Recent studies have shown the Universum learning to be 

particularly effective for high-dimensional data settings [2-10]. 

Most of these studies use balanced data sets with equal 

misclassification costs. That is, the number of positive and 

negative labeled samples is (approximately) the same, and the 

relative importance (or “cost”) of false positive and false 

negative errors is assumed to be the same.  However, many 

practical applications involve unbalanced data and unequal 

misclassification costs. Examples include credit card fraud 

detection, intrusion detection, oil-spill detection, medical 

diagnosis etc. [11-13]. In order to incorporate a  priori 

knowledge (in the form of Universum data), we need to extend 

the Universum learning to handle such cost-sensitive settings. 

Researchers have introduced many techniques to deal with 

unequal misclassification costs and unbalanced data settings 

[11-13]. Typically, these methods follow two basic approaches: 

 Cost-Sensitive Learning , where the costs of misclassification 

and the ratio of imbalance  in the data are introduced 

directly into the learning formulation [14-16]. 

 Sampling-based approaches, where the training samples of a 

particular class are  replicated to reflect unequal 

misclassification costs [13]. Such strategies exploit the 

equivalency between changing the proportion of positive 

and negative training samples  and the misclassification 

costs [13]. There are three sampling approaches:  

a. Oversampling replicates samples (of the minority class) 

until training data has equal number of positive and 

negative samples or equal misclassification costs.  

b. Undersampling  removes samples (of the majority class) 

until training data has equal number of positive and 

negative samples or equal misclassification costs.  

c. Hybrid methods use  a combination of undersampling  

and oversampling to achieve more balanced class 

distribution and/or equal misclassification costs. 

Note that cost-sensitive learning enables better analytic 

understanding, while  sampling-based methods are usually 

adopted by practitioners. This paper follows the direct 

approach of introducing the cost-ratios into Universum-SVM 

formulation. Specifically, we introduce the U-SVM 

classification setting, where different misclassification costs for 

false-positive vs. false-negative errors are given as the ratio 

fp fnr C C . We extend our work presented in [14] and 

modify Vapnik’s original formulation for U-SVM [1, 2] to 

include different misclassification costs. Further, we provide 

characterization of a good Universum for the proposed cost-

sensitive U-SVM. Our approach follows a practical strategy 

that aims to answer two practical questions:  

i. Can a particular Universum data set improve generalization 

performance of the cost-sensitive SVM classifier [15, 16] 

trained using only labeled data? 
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Fig.1. Two large-margin separating hyperplanes explain training data 

equally well, but have different number of contradictions on the 
Universum. The model with a larger number of contradictions should be 
selected. 

 

 

 

 

 

 

Fig. 2. The  - insensitive loss for the Universum samples. Universum 

samples outside the  -insensitive zone are linearly penalized using the 

slack variables 
*

j . 

 

ii.  Can we provide practical conditions for (i), based on the 

geometric properties of the Universum data and labeled 

training data?  

This approach is more suitable  for non-expert users, 

because practitioners are intereste d in using cost-sensitive U-

SVM only if it provides an improvement over standard cost-

sensitive SVM. Our conditions for the effectiveness of cost-

sensitive U-SVM extend conditions for the effectiveness of the 

standard U-SVM introduced in [3]. 

The paper is organized as follows. Section 2 describes 

Vapnik’s original formulation for U-SVM [1] and presents 

practical conditions for its effectiveness [3]. Section 3 presents 

new cost-sensitive U-SVM formulation and the practical 

conditions for its effectiveness. Section 4 provides empirical 

results to illustrate these conditions, using both synthe tic and 

real-life data sets. Finally, conclusions are presented in Section 

5. 

2  PRACTICAL CONDITIONS FOR STANDARD U-SVM  

LEARNING 

The idea of Universum learning was introduced by Vapnik [1, 
2] to incorporate a priori knowledge about admissible  data 
samples. The Universum learning was introduced for binary 
classification, where in addition to labeled training data we 

are also given a set of unlabe led examples from the 
Universum. The Universum contains data that belongs to the 
same application domain as the training data. However, these 
samples are known not to belong to either class. These 

unlabeled Universum samples are incorporated into learning 
as explained next. Let us assume that labeled training data is 

linearly separable using large -margin hyperplane . Then the 
Universum samples can fall e ither inside or outside  the 
margin borders  (see Fig. 1). Under U-SVM, we favor large-
margin models where the Universum samples lie inside the 

margin, as these samples do not belong to either class. Such 
Universum samples (inside the margin) are called 
contradictions, because  they are falsified by the model (i.e ., 
have non-zero slack variables for either class).  

Next, we briefly review the optimization formulation for 

Universum SVM classifier [1, 2]. Let us consider an inductive 

setting (for binary classification), where we have labeled 

training data ( , ),  1,2,...i iy i nx  and a set of unlabeled 

examples 
*( ),  1,2,...j j mx from the Universum. The 

analytic formulation for U- SVM [1, 2] is shown in Box (1). 

Note that all SVM optimization formulations in this paper are  

presented only  for  linear  parameterization;  but they can be  

 
 

             
 

 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

 
 

 

 

TABLE 1. STRATEGY TO ANALYZE THE EFFECTIVENESS OF U-SVM [3] 

1a. estimate SVM classifier for a given (labe led) training data se t. 

This step involves model se lection for the C and kernel 

parameter.  

1b. generate low-dimensional representation of training data by 
projecting it onto the normal direction vector of SVM 

hyperplane estimated in (1a) (see Fig. 3). 

1c. project the Universum data onto the normal direction vector of 
the  SVM hyperplane (see Fig. 4a). 

1d. analyze  the  histogram of projected Universum data in relation 

to projected training data (see Fig. 4b).  

  

Fig. 3. (a) Projection of the training data shown in red and blue 
onto the normal weight vector (w ) of the SVM hyperplane. (b) 

Univariate histogram of projections. i.e. histogram of ( )f x values 

for training samples. 

 

(a) (b) 

Fig. 4. Histogram of projections technique. 
(a) Projection of the universum data (shown in black) onto the 

normal weight vector (w ) of the SVM hyperplane.  
(b) Histogram of projections of the universum samples (shown in 

black) along with the training samples (shown in red/blue).  

 

(a) (b) 

Universum samples 

( ) ( )f b  x w x  

( ) 0f x  1  1  


 

*

j  
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Fig.5. A schematic il lustration of the histogram of projections of training 
and universum samples onto normal w  vector of SVM decision boundary 
satisfying the practical conditions for the effectiveness of U-SVM. 

 

TABLE 2. PRACTICAL CONDITIONS FOR EFFECTIVENESS OF U-SVM [3] 

A1. The histogram of projections of training samples is separable, 

and its projections cluster outside the SVM margin borders 

denoted as points -1/+1 in the projection space.  

The histogram of projections of the Universum data: 

A2. is symmetric  relative to the (standard) SVM decision 

boundary, and  

A3. It has wide distribution between SVM margin borders. 

 

readily extended to nonlinear case using kernels. Here, for 

labeled training data, we use standard SVM soft-margin loss 

with slack variables 
i . The Universum samples

*( )jx  are 

penalized via  –insensitive loss (shown in Fig. 2). Let 
*

j  

denote slack variables for Universum. Then the  U-SVM 

formulation is given as: 

 

, 1 1

1 * *
min  ( , ) ( )+

2b i j

n m
R b C Ci j 

 
   

w
w w w         (1) 

subject to constraints:  

        (training samples):     [( ) ] 1y bi i i   w x  

        (universum samples): 
* *

( )j jb     w x    

        0,  1,...,i i n        
* 0, 1,...,j j m    

 

Here parameter 0   is user-defined and usually set to zero 

or a small value. Parameters 
*, 0C C   control the trade-off 

between the margin size, the number of errors and the number 

of contradictions. Note that for 
* 0C   this formulation 

becomes equivalent to standard SVM classifier [15]. 

The solution to the optimization problem (1) yields a  large-

margin hyperplane that also incorporates a priori knowledge 

(i.e ., Universum data) into the final model. There are two 

design factors important for successful application of U-SVM: 

 Model Selection: which becomes rather difficult because  the 

kernelized U-SVM has 4 tuning parameters:C ,
*C , kernel 

parameter and (vs. two parameters in standard SVM).  

 generalization performance of U-SVM may be negatively 

affected by a poor choice of the Universum data.  

In practice , it may be  difficult to separate these two factors. 

The strategy for judging the effectiveness of a given 

Universum is described in [3]. This strategy is based on 

analysis of the histogram of projections of the training and 

universum samples onto the normal direction of the SVM 

decision boundary (see  Table 1). The benefits of this strategy 

are two-fold.  First, it simplifies the characterization of good 

Universum data. Specifically, based on the statistical 

properties of the projected Universum data re lative to labeled 

training data (in step 1d), we can formulate the conditions on 

whether using this Universum will improve the prediction 

accuracy of standard SVM estimated in step 1a. Practical 

conditions for the effectiveness of U-SVM [3] are provided in 

Table 2 and illustrated in Fig. 5. The second aspect of the 

proposed strategy is simplified model selection. Specifically, 

this strategy involves two steps, i.e ., 

a. First, perform optimal tuning of the C and kernel 

parameters for standard SVM classifier (in step 1a). 

b. Second, perform tuning of the ratio C*/C, while  keeping C 

and kernel parameters fixed (as in (a)). Parameter   is 

usually pre -set to a small value and does not require 

tuning.   

Cherkassky et al [3] demonstrate  the effectiveness  of these 

conditions for several real-life  data sets. Further, they establish 

connections between their practical conditions and the 

analytic results in [5]. However, like all other studies of the U-

SVM, their paper assumes balanced data sets with equal 

misclassification costs. So there is a need to extend Universum 

learning to handle  such cost-sensitive settings. 

3  COST-SENSITIV E UNIVERSUM-SVM 

Consider a binary classification problem where we have 

labeled training samples and unlabeled Universum samples, as 
in standard U-SVM described in Section 2. However, we assign 
different importance (or cost) to false positive and false 

negative errors, as specified by the ratio fp fnr C C . The 

goal of cost-sensitive learning is to estimate a classifier that 

minimizes the weighted error fp fp fn fnC P C P  for future  test 

samples [13, 15, 16]. Here fpP and fnP denote  the probability  

(error rate) of false positive and false negative  errors. For 
empirical comparisons, this weighted test error is normalized 

by its maximum possible value  ( fp fnC C ), as shown next: 

 

Normalized ( fp fp fn fnC P C P ) =   
( ) ( )

 
( ) ( )

fp fnr n n n n

r n n n n

 

   

 


 

                                         =   
( ) ( )

 
1

fp fnr n n n n

r

  


 

 
 

( ) 0f x  1  1  
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Fig.6. A schematic i llustration of the histogram of projections onto normal 

w vector of cost-sensitive SVM decision boundary satisfying the practical 

conditions for the effectiveness of cost-sensitive U-SVM (when 1r  ). 

Dashed red/blue lines indicate the training samples’ class means. The 

average value of the two class means is shown in dashed green.  

 
 

TABLE 3. PRACTICAL CONDITIONS FOR EFFECTIVENESS OF COST-SENSITIVE U-

SVM 

B1. The histogram of projections of the training data is well sepa rable, and 
the samples from the class with smaller misclassification cost, (i.e. 

‘+’ve  class when 1r  ) cluster outside the ‘+1’ soft-margin. 

Conditions for the  histogram of projections of the Universum data: 

B2. is slightly biased towards the class for which the misclassification cost 

is higher, (i.e. ‘’ ve  class when 1r  ), and  

B3. is well spread within the class means of the training samples.  

 
 

 

Here  
fpn ,

fnn  denotes the number of false positive and false  

negative samples, and n
, n

denotes the number of positive 

and negative samples.  Such normalization limits the value of 
the weighted error to the  range of [0, 1], which is the same 

range used in standard binary classification problems (with 
equal costs). In the the rest of the paper, we refer to this 
normalized weighted test error as simply the test error.    

Several alternative metrics have been used in literature  to   
measure   the   performance of   a   classification model under 

unbalanced and unequal misclassification costs settings [11, 
15]. This paper advocates using cost-sensitive U-SVM only if it 
provides an improvement over standard cost-sensitive SVM 
[15, 16]. Following [16], it has been  shown  that  the  minimizer 

for  the expected   value   of  the  loss  function  for  the cost-
sensitive SVM follows the Bayes rule . This provides theoretical 
justification for using an empirical estimate of the Bayes Risk 
(i.e ., the weighted test error) for empirical comparisons 
presented in Section 4. 

Next, we present an extension of the Universum learning to  
cost-sensitive settings. As discussed in Section 1, there exist 
several approaches for handling cost-sensitive settings [11-13]. 
This paper follows the direct approach of introducing the cost-

ratio fp fnr C C  directly into the U-SVM formulation (1). 

This leads to the modified cost-sensitive U-SVM formulation 
shown in Box 2.  

    

,

*

1
                                             

1
( )  + 

2

*                             

min ( , )

(2)
m

b i class i class

jj

C Ci i

C

R b r 



 



    

 

w
w ww

  

    subject to constraints:   

   (training samples):       [( ) ] 1i i iy b    w x  

    (universum samples):   
* *

( )j jb     w x    

     0, 1,...,i i n         
*

0, 1,...,j j m    

 

Here , parameters r and 0  are user-defined. In all 
empirical results presented in Section 4, the value of  is set to 

zero. Tunable regularization parameters 
*, 0C C   control 

the trade-off between minimization of cost-weighted errors, 
margin size  and the maximization of the number of 
contradictions. 

The proposed cost-sensitive U-SVM uses unequal costs for 

the two classes in the labeled training data , following [15, 16]. 

The samples of the negative class lying inside the soft-margin 

are penalized r  times more than those of the positive class. 

However, the loss for the Universum samples remains the 

same as in the original formulation (1). Note that when 
* 0C   this formulation is equivalent to standard cost-

sensitive SVM [15, 16].    

Following [2], this quadratic optimization problem (2) can 

be solved by introducing the Univerum samples twice with 

opposite  labels and hence solving a modified cost-sensitive 

SVM problem. 
That is, we introduce  

         
*   and   1 ,   1,2,...n j j n jy j m    x x  

         
*   and  1,  1, 2,...2n j j n jy j m m m      x x  

Then (2) is equivalent to solving the following optimization 

problem, 

 

   

2

1

1 ˆmin  ( , )  ( )         
, 2

n m

i
R b C ki ib





   w w w

w
              

(3) 

   subject to constraints:      [( ) ]i i i iy b     w x  

                
0,       1,..., 2i i n m     

 

where,    

1i        and   Ĉ C     ;  for   1,...,i n  

i  
  
and   ˆ *C C     ;  for  1,..., 2i n n m    

and, 
       if   1 ( 1,2,... )

1                  otherwise                      

fp fn i
ki

C C y i n  
 


     

This problem (3) can be  easily solved in the dual form by 

using the original U-SVM software [17] where  the Ĉ  penalty 

term for the negative samples is weighted by the factor 

( ) 0f x  1  1  
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fp fnr C C . Hence, the computational cost for solving the 

cost-sensitive U-SVM problem remains the same as for the 

standard U-SVM, which is in turn equivalent to solving the 

standard SVM problem with n+2m samples [2].  The modified 

cost-sensitive U-SVM software is made publicly available  [18]. 

The solution to the optimization problem (2) defines the large 

margin hyper-plane 
* *( ) ( )f x b  w x  that incorporates a 

priori knowledge (i.e ., Universum samples) and also reflects 

different misclassification costs. 

As evident from the optimization formulation (2), cost-
sensitive U-SVM has the same design issues as the original U-
SVM, i.e ., model selection and selection of good Universum. These 

issues can be addressed via  the same general strategy as our 
earlier approach used for standard U-SVM (see Table 1). 
However, now the univariate histogram is generated by 
projecting the training and universum samples onto the normal 
direction vector of the cost-sensitive SVM hyperplane. Based on 

this histogram of projections, new practical conditions for the 
effectiveness of cost-sensitive U-SVM are provided in Table 3 
and illustrated in Fig. 6. These new conditions (B1)-(B3) take 
into account the inherent ‘bias’ in the estimated SVM models 
under cost-sensitive settings [19, 20]. Conditions (A1)-(A3) 

represent a special case of conditions (B1)-(B3) when the costs 
are equal ( 1r  ). Further, we propose the following two-step 
strategy for model selection for the cost-sensitive U-SVM: 
1. perform model selection for C and kernel parameters for 

the cost-sensitive  SVM formulation. (These parameters are 

then fixed and used for the cost-sensitive U-SVM). 

2. perform model selection for the C*/C parameter specific to 
the cost-sensitive U-SVM formulation, while  keeping C 
and kernel parameters fixed. Parameter  is usually pre-

set to a small value and does not require tuning.  
This strategy is used in all empirical comparisons reported in 
Section 4 below (where parameter  is set to zero). 

4  EMPIRICAL RESULTS FOR COST-SENSITIV E U-SVM 

This section presents empirical results to illustrate the 

conditions (B1)-(B3) for the effectiveness of cost-sensitive 

Universum SVM.  

The first set of experiments uses the synthetic 1000-dimensional 

hypercube data set , where each input is uniformly distributed in 

[0, 1] interval and only 200 out of 1000 dimensions are relevant 

for classification. An output class label is generated as y = 

sign(x1+x2+…+x200 – 100). For this data set, only linear SVM is 

used because the optimal decision boundary is known to be 

linear. The training set size is 1,000, validation set size is 1,000, 

and test set size is 1,000. For U-SVM, 1,000 Universum 

samples are generated from the training data using the 

Random Averaging  (RA) strategy [2, 3, 4]. That is, Universum 

samples are generated by randomly selecting positive and 

negative training samples, and then computing their average. 
For this data set, we consider three different cost ratios r = 

0.5, 0.2, 0.1 to capture the effect of varying cost settings. We 
model this data for the standard SVM, cost-sensitive SVM and 
cost sensitive U-SVM using linear kernel. The model selection  

 
          (a)           (b) 

 
                     (c) 
Fig. 7. Univariate histogram of projections onto the normal weight vector of 

cost-sensitive SVM for different cost-ratios: (a) r=0.5(C=2
-6
 and C*/C=2

-4
 ),  

(b) r=0.2 (C=2
-5
 and C*/C=2

-8
 ), (c) r=0.1 (C=2

-5
 and C*/C=2

-5
 ). 

 

 

TABLE 4. COMPARISON OF STANDARD/COST-SENSITIVE SVM AND COST-

SENSITIVE U-SVM FOR SYNTHETIC DATA 

METHODS standard SVM 
cost-sensitive  

SVM 

cost-sensitive  

U-SVM  (RA) 

Cost-Ratio r=0.5 

test error (in %) 27.81(1.86) 24.84(1.38) 25.15(1.14) 

FP rate  (in %) 27.49(8.57) 42.26(6.03) 39.9(5.72) 

FN rate  (in %) 27.96(6.39) 16.07(4.27) 17.69(3.74) 

Cost-Ratio r=0.2 

test error (in %) 21.21(5.68) 15.09(0.67) 14.92(0.57) 

FP rate  (in %) 61.01(37.66) 73.75(14.07) 72.23(12.03) 

FN rate  (in %) 13.34(14.09) 3.37(2.26) 3.47(2.18) 

Cost-Ratio r=0.1 

test error (in %) 15.48(8.68) 8.80(0.43) 8.93(0.74) 

FP rate  (in %) 68.79(37.22) 96.25(9.83) 90.99(11.53) 

FN rate  (in %) 10.24(13.17) 0.27(0.8) 0.93(1.52) 

 
 
is performed by tuning parameter values providing the 
smallest normalized weighted error on the independent 

validation set.  

Table 4 shows performance comparison for the standard 

SVM, cost-sensitive SVM and the cost-sensitive U-SVM with 

different cost-ratios (r=0.5, 0.2, 0.1). The table  shows the 

average value of the (normalized weighted) test error over 10 

random experiments. Here, for each experiment we randomly 

select the training/validation set, but use the same test set. The 

standard deviation of the test error is shown in parenthesis. 

Additionally we provide the average False Positive  and False 

Negative test error rates over 10 random experiments. The 

typical histograms of projections for training data along with 

the Universum data are shown in Fig. 7. In all figures the 

training samples for the two classes are shown in red and blue  

with  their  respective  class means indicated by the dotted  
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TABLE 5.  COMPARISON OF STANDARD SVM, COST-SENSITIVE SVM AND COST-SENSITIVE U-SVM FOR REAL LIFE MNIST  DATA (USING LINEAR KERNEL). 

 

METHODS standard SVM cost-sensitive  SVM 
cost-sensitive  

U-SVM (digit 1) 

cost-sensitive  

U-SVM(digit 3) 

cost-sensitive  

U-SVM(digit 6) 

cost-sensitive  

U-SVM(RA) 

 Cost-Ratio (r=0.5) 

test error (%) 4.80(0.51) 4.40(0.38) 4.39(0.31) 4.36(0.32) 4.33(0.44) 4.37(0.46) 

FP rate  (in %) 3.94(0.50) 5.67(1.48) 5.64(1.35) 6.00(1.37) 5.84(1.40) 5.54(1.23) 

FN rate  (in %) 5.29(0.81) 3.82(0.69) 3.82(0.67) 3.60(0.67) 3.63(0.75) 3.84(0.67) 

 Cost-Ratio (r=0.2) 

test error (%) 4.91(0.48) 3.15(0.22) 3.12(0.24) 3.13(0.17) 3.17(0.21) 3.19(0.25) 

FP rate  (in %) 3.92(0.58) 10.96(2.96) 11.10(2.90) 11.45(3.05) 11.38(2.71) 10.64(2.05) 

FN rate  (in %) 5.09(0.55) 1.72(0.47) 1.65(0.44) 1.60(0.50) 1.66(0.45) 1.83(0.56) 

 Cost-Ratio (r=0.1) 

test error (%) 5.03(0.72) 2.41(0.34) 2.36(0.33) 2.33(0.34) 2.31(0.30) 2.39(0.29) 

FP rate  (in %) 4.57(0.72) 13.33(2.42) 13.94(2.88) 15.17(4.04) 14.54(3.48) 13.94(2.43) 

FN rate  (in %) 5.07(0.75) 1.41(0.51) 1.30(0.53) 1.15(0.50) 1.18(0.57) 1.33(0.47) 

 

 
             (a)                       (b)                (c)                        (d) 

Fig. 8. Univariate histogram of projections onto the normal weight vector of cost-sensitive SVM (r=0.5, C=2
-4
) for different types of Universa. Training set 

size ∼1,000 samples. Universum set size ∼1,000 samples. (a) Digit 1 Universum C*/C=29
 (b) Digit 3 Universum C*/C=25

 (c) Digit 6 Universum C*/C=28
 

(d) RA Universum C*/C=2
-5
. 

   

               (a)                (b)             (c)                         (d) 
Fig. 9. Univariate histogram of projections onto the normal weight vector of cost-sensitive SVM (r=0.1, C=2

-5
) for different types of Universa. Training set 

size ∼1,000 samples. Universum set size ∼1,000 samples. (a) Digit 1 Universum C*/C=220
 (b) Digit 3 Universum C*/C=27

 (c) Digit 6 Universum 

C*/C=210
 (d) RA Universum C*/C=2

-7
. 

 

 

 

red/blue line. The histogram of projections of the universum 

samples is shown in black. Further, we also show the average 

of the two class means of the training samples in green. This 

helps to illustrate the  projection bias of the universum samples 

towards positive or negative class. Typical histograms of 

projections (in Fig. 7) show that the training samples are not 

separable. Hence, according to condition B1 (in Table  3), we 

expect no improvement over the cost-sensitive SVM. This is 

consistent with results in Table 4. For this data set (with 

unequal costs), introducing Universum does not improve 

generalization (relative to standard cost-sensitive SVM). 

The second set of experiments uses handwritten digits “8” vs. 

“5” MNIST data [21]. The goal is accurate classification of 

digits “8” vs. “5”, where each sample is represented as a real-

valued vector of size  28x28=784. We use four types of 

Universa: handwritten digits “1”, “3”, “6” and RA and analyze 

their effectiveness using the histograms of projections of both 

labeled and Universum data sets. For this experiment, 

 Number of training samples ~ 1000 (500 per class). 

 Number of validation samples ~ 1000 (500 per class. This 

independent validation set is used for model selection). 

 Number of test samples ~1866 (i.e ., 892 samples of digit 

“8” and 974 samples of digit “5”).  

 Number of Universum samples ~ 1000. 

 Linear SVM parameterization is used. 

Digit “8” samples correspond to a positive class and digit “5” 

to negative class. So misclassification costs are defined as: 
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Table 5 shows performance  comparisons between standard 

SVM, cost-sensitive SVM and the cost-sensitive U-SVM for 

different types of Universa (digit “1”, “3”, “6” and RA) and for 

different cost-ratios (r=0.5, 0.2, 0.1). Typical histograms of 

projections for training data along with the Universum data 

are shown in Figs. 8 and 9. For this data  set the histograms of 

projections for the cost-ratio r=0.2 are  not shown, because they 

look very similar to those for r=0.1. Visual analysis of these 

histograms indicates that the training samples are not 

separable; hence , cost-sensitive U-SVM is not likely to provide 

any improvement over the cost-sensitive SVM. This is 

consistent with empirical results shown in Table 5. 

Standard sampling-based approaches are technically 

equivalent to setting different misclassification costs [15, 16]. 

For example, consider the above experiment for the cost-

sensitive SVM with r = 0.5. A typical oversampling solution 

approach would use the training data set containing 1,000 

positive samples (of digit ‘8’) and 500 negative samples (of 

digit ‘5’) to estimate  a standard SVM classifier (with equal 

misclassification costs). This is equivalent to using a penalty of 

2C for the positive class and C for the negative class (in the 

formulation (1) with C*=0). Of course, this oversampling 

approach is mathematically equivalent to solving the  cost-

sensitive SVM formulation with r=0.5 (see formulation (2) with 

C*=0). For this current experiment with r = 0.5, the 

oversampling solution approach yields a test error  of 4.47 % 

with FP rate  of 5.88 % and FN rate  of 3.82 %. These results are 

practically the same as error rates shown in Table 5 (obtained 

via cost-sensitive solution approach). Detailed theoretical 

analysis of the equivalence between cost-sensitive  and the 

sampling-based approaches can be found in [13]. 

 

                (a)                       (b)                 (c)          (d) 

Fig. 10. Univariate histograms of projections for cost-sensitive SVM with r=0.5 (C=2, 
6

2


 ), for different types of Universa. Training set size ∼1000 

samples. Universum set size ∼1000 samples.  (a) Digit 1 Universum C*/C=24
. (b) Digit 3 Universum C*/C=22

. (c) Digit 6 Universum C*/C=22
. (d) RA 

Universum C*/C=2
-1
. 

 

            (a)               (b)                           (c)                       (d) 

Fig. 11. Univariate histograms of projections for cost-sensitive SVM with r=0.1 (C=2, 
62  ), for different types of Universa. Training set size ∼1000 

samples. Universum set size ∼1000 samples.  (a) Digit 1 Universum C*/C=24
. (b) Digit 3 Universum C*/C=24

. (c) Digit 6 Universum C*/C=24
. (d) RA 

Universum C*/C=2
-2
.  

 

TABLE 6.  COMPARISON OF STANDARD SVM, COST-SENSITIVE SVM AND COST-SENSITIVE U-SVM FOR REAL LIFE MNIST  DATA (USING RBF KERNEL). 

METHODS standard SVM cost-sensitive  SVM 
cost-sensitive  

U-SVM (digit 1) 

cost-sensitive  

U-SVM(digit 3) 

cost-sensitive  

U-SVM(digit 6) 

cost-sensitive  

U-SVM (RA) 

 Cost-Ratio (r=0.5) 

test error (%) 1.34(0.28) 1.31(0.29) 1.23(0.37) 0.95(0.19) 1.15(0.34) 1.16(0.28) 

FP rate  (in %) 1.10(0.73) 1.12(0.72) 0.96(0.66) 1.07(0.82) 0.89(0.74) 1.03(1.12) 

FN rate  (in %) 1.45(0.29) 1.41(0.3) 1.35(0.36) 0.89(0.27) 1.27(0.35) 1.23(0.27) 

 Cost-Ratio (r=0.2) 

test error (%) 1.59 (0.25) 1.45(0.20) 1.29(0.28) 0.97(0.31) 1.11(0.22) 1.17(0.28) 

FP rate  (in %) 1.15(0.24) 3.19 (2.26) 3.43(2.69) 3.35(2.71) 2.64(2.27) 3.00(3.48) 

FN rate  (in %) 1.67(0.32) 1.13(0.44) 0.90(0.50) 0.53(0.39) 0.83(0.47) 0.84(0.54) 

 Cost-Ratio (r=0.1) 

test error (%) 1.50(0.24) 1.13(0.19) 1.11(0.17) 0.80(0.14) 0.90(0.22) 0.92(0.17) 

FP rate  (in %) 1.31(1.47) 5.91(2.75) 6.57(3.27) 6.29(3.20) 5.24(2.54) 6.58(3.62) 

FN rate  (in %) 1.52(0.28) 0.69(0.37) 0.61(0.33) 0.30(0.19) 0.51(0.27) 0.41(0.27) 
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The 3rd set of experiments uses the same real-life handwritten 

digits “8” vs. “5”. However, here we use an RBF kernel of the 

form  2
( , ') exp 'K   x x x x . Table 6 shows empirical 

performance  comparisons between standard SVM, cost-

sensitive SVM and the cost-sensitive U-SVM for different 

types of Universa (digit “1”, “3”, “6” and RA) and different 

cost-ratios (r = 0.5, 0.2, 0.1). Typical histograms of projections 

for training data along with the Universum are shown in Figs. 

10 and 11. Note that histograms for the cost-ratio r=0.2 are not 

shown, because they are very similar to histograms for r=0.1. 
The histograms of projections in Figs. 10-11 have the 

following characteristics: 

 positive and negative training samples are well-separable. 

 digit  ‘1’: well spread Universum outside training samples’ 

class means and highly biased towards positive class. 

 digit  ‘3’: well spread Universum samples about training 

samples’ class means and slightly biased towards negative 

class. 

 digit  ‘6’: well spread Universum samples about training 

samples class means but slightly biased towards positive 

class. 

 Random Averaging : well spread universum samples about 

training samples’ class means but slightly biased towards 

positive class. 

Practical conditions (B1)-(B3) indicate that for the given well-

separable training samples (digit ‘8’ vs. ‘5’); digit ‘3’ is the best 

choice for Universum. Although, digit ‘6’ and RA are well-

spread about the training samples’ class means; they are 

slightly biased towards positive class. Further, digit ‘1’ 

samples represent the worst choice , as they are not well-

spread about the training samples ’ class means, and are highly 

biased towards positive class. These findings are consistent 

with empirical results in Table 6, showing no statistically 

meaningful improvement for digit 1 Universum, and a good 

improvement for digits ‘3’, digit ‘6’ and RA. 

The 4th set of experiments also involves the classification of 

handwritten digits “8” vs. “5” using MNIST data. We use the 

same experimental setup with 1000 training/validation 

samples, and introduce artificial Universum samples formed 

as follows. Each component (pixel) of a 28 × 28 = 784 

dimensional sample follows a binomial distribution with 

probability p(x = 1) = 0.1395. This probability value 0.1395 is 

chosen so that the average intensity of the Universum samples 

is the same as that of the training data (averaged for both 

digits 5 and 8). Fig. 12(a) shows an example of such a 

universum. Intuitively, this (random noise) Universum is not 

expected to improve the generalization of cost-sensitive SVM. 

Experimental results comparing the test error rates for 

cost-sensitive RBF SVM classifier and U-SVM using 1,000 

Universum samples are shown in Table 7. The histograms of 

projections are provided in Figs . 12(b)-(c). As expected, this  

Universum does not yield any improvement (over cost-

sensitive SVM). This can be anticipated from the histogram of 

               
         
   (a)                      (b) 

 
                        (c) 

Fig. 12. Binomially distributed Universum (random noise).  

(a) 28x28 image.  

(b) Histogram of projections for cost-ratio r=0.5 (C*/C=215
).  

(c) Histogram of projections for cost-ratio r=0.1 (C*/C=215
). 

 

TABLE 7. COMPARISON OF COST-SENSITIVE SVM AND COST-SENSITIVE U-SVM 

WITH BINOMIALLY DISTRIBUTED UNIVERSUM FOR DIFFERENT COST-RATIOS  
METHODS cost-sensitive  SVM cost-sensitive  U-SVM (RA) 

Cost-Ratio (r=0.5) 

test error (in %) 1.46(0.32) 1.46(0.32) 

FP rate  (in %) 1.19(0.30) 1.19(0.30) 

FN rate  (in %) 1.58(0.54) 1.58(0.54) 

Cost-Ratio (r=0.2) 

test error (in %) 1.36(0.36) 1.35(0.35) 

FP rate  (in %) 3.61(2.37) 3.59(2.33) 

FN rate  (in %) 0.95(0.37) 0.95(0.37) 

Cost-Ratio (r=0.1) 

test error (in %) 1.16(0.07) 1.11(0.11) 

FP rate  (in %) 7.98(4.13) 7.17(3.94) 

FN rate  (in %) 0.53(0.41) 0.55(0.39) 

 

  

projections in Fig. 12, because projections of the Universum 

samples are not well-spread about the class means. 

The  5th set of experiments uses the  Real-life ISOLET data set 

[22], where the data samples represent speech signals of 150 

subjects for the letters ‘B’ vs. ‘V’. Here, each sample is 

represented by 617 features that include spectral coefficients, 

contour features, sonorant features, pre -sonorant features, and  

post-sonorant features [22]. We label the voice signals for ‘B’ 

as class ‘+1’ and ‘V’ as class ‘1’. The cost-ratio is specified as 

missclassification cost(truth='V',prediction='B')

missclassification cost(truth='B',prediction='V)

C
fp

r
C

fn

   

For this experiment we use: 

 Number of training samples ~ 100  (50 samples per class). 

 Number of Universum samples ~ 300 (three types of 

Universa: letters D, P and RA). 
 Number of validation/test samples ~ 500 (250 samples per 

class). 
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                (a)                                           (b)  

 
        (c) 

Fig. 13. Univariate histograms of projections for cost-sensitive SVM with 

r=0.5 (C=2
-4
) for different types of Universa. Training set size ∼100  

samples. Universum set size ∼300 samples. (a) letter D Universum 

C*/C=24
 (b) letter P Universum C*/C=25

 (c) RA Universum  C*/C=2
-4
. 

  
            (a)        (b) 

 
                      (c) 

Fig. 14. Univariate histogram of projections for cost-sensitive SVM with 

r=0.1 (C=2
-3
) for different types of Universa. Training set size ∼100 

samples. Universum set size ∼300 samples. (a) letter D Universum 

C*/C=210
 (b) letter P Universum C*/C=26

 (c) RA Universum  C*/C=2
-5
.  

 

 
 

 
 

 
TABLE 8. COMPARISON OF STANDARD SVM, COST-SENSITIVE SVM AND COST-SENSITIVE U-SVM ON ISOLET  (‘B’  VS. ‘V’  DATASET) FOR DIFFERENT COST-RATIOS 

 

METHODS standard SVM cost-sensitive SVM 
cost-sensitive 

U-SVM (letter D) 

cost-sensitive 

U-SVM (letter P) 

cost-sensitive 

U-SVM (RA) 

 Cost-Ratio (r=0.5) 

test error (in %) 5.34(1.47) 5.21(1.23) 4.59(1.24) 4.33(0.82) 4.96(1.05) 

FP rate (in %) 9.36(2.31) 10.20(4.08) 10.32(3.88) 10.20(3.78) 9.52(3.40) 
FN rate (in %) 3.32(1.61) 2.72(1.90) 1.72(1.21) 1.40(0.84) 2.68(1.85) 

 Cost-Ratio (r=0.2) 

test error (in %) 3.51(0.51) 3.42(0.42) 2.93(0.61) 2.77(0.52) 3.03(0.53) 

FP rate (in %) 11.68(3.20) 12.56(3.18) 12.6(3.83) 13.6(3.76) 11.96(2.59) 
FN rate (in %) 1.88(0.98) 1.60(0.75) 1.00(0.74) 0.60(0.43) 1.24(0.74) 

 Cost-Ratio (r=0.1) 

test error (in %) 2.79(0.75) 2.70(0.65) 2.59(0.58) 1.78(0.42) 2.39(0.69) 
FP rate (in %) 12.24(3.81) 15.28(4.28) 14.88(4.07) 17.6(4.82) 14.6(3.93) 

FN rate (in %) 1.84(0.76) 1.44(0.66) 1.36(0.60) 0.2(0.28) 0.48(0.45) 

 

 

 
 

 

Our initial experiments suggest that linear SVM works well 

for this dataset.  Comparisons of the (linear) standard SVM, 

cost-sensitive SVM and the cost-sensitive U-SVM for the 

different types of Universa: letters D, P and RA with 

different cost-ratios (r=0.5, 0.2, 0.1) are shown in Table 8. 

Typical histograms of projections for training data along 

with the Universum data for the cost-ratios (r=0.5, 0.1) are 

shown in Figs 13 and 14. For this dataset, typical histograms 

of projections for the cost-ratio r=0.2 are very similar to 

r=0.1, and have been omitted. From these figures, it is clear 

that the training samples are well-separable. Analysis of 

projections for different types of universum samples  shows 

that:  

 letter P has well spread projections between the training 

samples’ class means and are slightly biased towards the 

negative class. 

 letter D has narrower projections than letter P and they 

are slightly biased towards the positive class. 

 Random Averaging  has narrower projections than letter P 

and they are slightly biased towards positive class. 

Hence, based on conditions (B1)-(B3), letter P is expected to 

be more effective than letter D and RA. This is consistent 

with empirical results in Table 8.  
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TABLE 9. COMPARISON OF STANDARD  SVM, COST-SENSITIVE SVM AND COST-SENSITIVE U-SVM ON GTSRB (‘50’  VS. ‘80’ DATASET) FOR DIFFERENT COST-RATIOS  

METHODS standard SVM cost-sensitive  SVM 
cost-sensitive  

U-SVM (sign 30) 

cost-sensitive  

U-SVM (sign 60) 

cost-sensitive  

U-SVM (RA) 

 Cost-Ratio (r=0.5) 

test error (in %) 9.82(0.83) 9.25(0.99) 6.75(1.09) 6.84(1.30) 8.91(0.60) 

FP rate  (in %) 6.74(1.56) 8.84(3.77) 8.98(4.81) 9.78(5.53) 8.20(2.91) 

FN rate  (in %) 11.36(1.74) 9.46(1.65) 5.64(2.49) 5.38(1.73) 9.26(1.03) 

 Cost-Ratio (r=0.2) 

test error (in %) 9.27(1.25) 7.14(1.26) 5.88(0.82) 5.93(0.98) 6.91(1.13) 

FP rate  (in %) 7.12(1.79) 19.75(4.97) 23.8(5.54) 26.07(3.57) 16.25(4.70) 

FN rate  (in %) 9.7(1.6) 4.63(2.06) 2.3(1.51) 1.9(0.91) 5.05(2.06) 

 Cost-Ratio (r=0.1) 

test error (in %) 9.44(1.70) 5.71(1.05) 4.74(1.15) 4.62(1.28) 4.77(0.75) 

FP rate  (in %) 6.64(2.19) 45.02(18.69) 42.54(14.16) 44.98(14.27) 26.68(7.33) 

FN rate  (in %) 9.72(1.98) 1.78(1.32) 0.96(0.49) 0.58(0.45) 2.6(1.00) 

               
(c) 

Fig. 15. Univariate histogram of projections for cost-sensitive SVM with cost-ratio r=0.5 (C=2
-2
) for different types of Universa. Training set size ∼200  

samples. Universum set size ∼1000 samples. (a) sign ‘30’ Universum C*/C=22
 (c) sign ‘60’ Universum C*/C=24

 (c) RA Universum C*/C=2
-5
. 

                
                                  (a)         (b)                             (c) 

 

Fig. 16. Univariate histogram of projections for cost-sensitive SVM with cost-ratio r=0.2 (C=2
-2
) for different types of Universa. Training set size ∼200  

samples. Universum set size ∼1000 samples. (a) sign ‘30’ Universum C*/C=24
 (c) sign ‘60’ Universum C*/C=24

 (c) RA Universum C*/C=2
-7
. 

              
                                    (a)          (b)                              (c) 

 

Fig. 17. Univariate histogram of projections for cost-sensitive SVM with cost-ratio r=0.1 (C=2
-2
) for different types of Universa. Training set size ∼200  

samples. Universum set size ∼1000 samples. (a) sign ‘30’ Universum C*/C=27
 (c) sign ‘60’ Universum C*/C=26

 (c) RA Universum C*/C=2
-6
. 
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For our 6th set of experiments we use the real-life  German 

Traffic Sign Recognition Benchmark (GTSRB) dataset [23]. The 

task is to perform traffic sign classification between the images 

of the signs "50" vs. "80". These sample images are represented 

by their pyramid histogram of gradient (PHOG) features [10, 

23]. We label the traffic sign '50' as class '+1' and the traffic sign 

‘80’as class ‘-1'. The cost-ratio is specified as, 

missclassification cost(truth='80',prediction='50')

missclassification cost(truth='50',prediction='80')

C
fp

r
C

fn

    

For this experiment: 

 Number of training samples ~200 (100 per class). 

 Number of validation samples ~ 200 (100 per class). 

 Number of Universum samples ~ 1000 (3 types of 

Universa: signs ‘30’, ‘60’ and RA). 

 Number of Test samples ~ 2000 (1000 per class).  

 Dimensionality of the input space ~ 1568 (PHOG features). 

Initial experiments suggest that linear parameterization is 

optimal for this dataset; hence only linear kernel has been 

used in all comparisons. Performance comparisons between 

standard SVM, cost-sensitive SVM and cost-sensitive U-SVM 

for the different types of Universa: signs ‘30’, ‘60’ and RA with 

different cost-ratios (r=0.5, 0.2, 0.1) are shown in Table 9. The 

typical histograms of projections for training data along with 

the Universum data are also shown in Fig. 15, 16 and 17. 

Analysis of projections for different types of universum 

samples shows that:  

 sign ‘30’ has well spread projections between the training 

samples’ class means and slightly biased towards the 

negatve class. 

 sign ‘60’ has well spread projections between the training 

samples’ class means and slightly biased towards the 

negatve class. 

 Random Averaging  has narrower projections than 

projections for the signs “30” and “60”, except for the cost-

ratio r=0.1, for which it has well-spread projections about 

the training samples’ class means. 

Hence, for the cost-ratios r=0.5, 0.2 we can expect signs “30” 

and “60” to be more effective than RA Universum. Further, for 

r=0.1 all the three types of Universa  are  likely to provide 

similar improvements in generalization performance . This is 

consistent with the empirical results in Table 9. 

Our final experiment uses publicly available  Freiburg 

Electroencephalogram (EEG) dataset [24]. The dataset contains 

intracranial EEG recordings from 21 patients with medically 

intractable focal epilepsy. For each patient, the dataset 

contains EEG recordings from 6 electrodes, sampled at 256 

samples/sec. These EEG signals have  been labeled by human 

medical experts as preictal (30 min preceding a seizure onset), 

ictal and interictal, as shown in Fig. 18. The goal is to estimate 

predictive model for discriminating between preictal and 

interictal signals. This model should be estimated from the 

training data with known class labels. This can be formalized 

as a binary classification problem. 

 
 

Fig. 18. iEEG recordings from six electrodes with a seizure event (ictal, 

shown in green) reproduced from [25]. Preictal signals (30 min preceding 
a seizure onset) are shown in pink. Interictal signals (at least 1 hour 

preceding or postceding a seizure) are shown in blue.  
 

 

 

 
              (a)            (b) 

Fig. 19. Univariate histogram of projections onto cost-sensitive SVM 

normal weight vector (C=10,    0.25) for different types of Universa for 

r=0.1. (a) patient_20 interictal with C*/C=2
-5 

 (b) Random Averaging with 
C*/C= 4. 

 

 

Unknown nature of epileptic seizures and high variability of 

EEG patterns across patients favor patient-specific predictive 

modeling. That is , a separate classifier is estimated for each 

patient in the Freiburg dataset (using labeled training data for 

this patient). In our experiments (reported below), the task is 

to classify ‘preictal’ vs. ‘interictal’ signals for patient_1 in the 

Freiburg dataset. Further, available data is highly unbalanced 

because se izure events are quite  rare: there are approximately 

10 times more interictal samples than preictal in the Freiburg 

dataset. Cost-sensitive SVMs are used to account for unequal 

misclassification costs common in biomedical applications  [15, 

25,   26]. Our experiments use the cost-ratio specified as: 

 

1

10

(truth='interictal',prediction=preictal')

(truth='preictal',prediction='interictal')

C
fp

r
C

fn

   

 

The input features used for SVM modeling have been 

generated using preprocessing and feature selection steps 

described in [25], as follows. As a part of pre -processing, 

standard bipolar and/or time-differential methods have been 

applied to remove/reduce noise in EEG signals [25, 26]. Then 

EEG signals were divided into 20 sec windows with a 10 sec 

overlap. For each window,  the Power Spectral Density (PSD) 

of nine different spectral bands: delta (0.5-4 Hz), theta (4-8  
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TABLE 10. COMPARISON OF STANDARD SVM, COST-SENSITIVE SVM AND COST-SENSITIVE U-SVM ON FREIBURG DATASET FOR PATIENT 1.  

 (‘PREICTAL’ VS. ‘INTERICTAL’ ) 

METHODS standard SVM cost-sensitive  SVM 
cost-sensitive  

U-SVM (patient ‘20’) 

cost-sensitive  

U-SVM (RA) 

test error (in %) 15.74 12.69 12.18 5.16 

FP rate  (in %) 0.09(2/2154) 0(0/2154) 0(0/2154) 0.09(2/2154) 

FN rate  (in %) 17.3(31/179) 13.9(25/179) 13.4(24/179) 5.5(10/179) 

     

 

Hz), alpha (8-13 Hz), beta (13-30 Hz), four gamma bands (30-

47 Hz, 53-70Hz , 70-90 Hz and 103-128 Hz) were computed for 

all the 6 electrodes. Each moving window is represented as an 

input feature vector of size 6 x 9 = 54, and each window in the 

training data is labeled as interictal (negative) or preictal 

(positive). These 54-dimensional training samples are used to 

estimate an SVM classifier, in order to predict future 

(unlabeled) test inputs. For this experiment, available  data 

contains 4 seizure recordings for the  patient_1. Hence, seizures 

1, 2, and 3 are used for training and seizure 4 is used as test 

data. Our goal is to investigate the effectiveness of the cost-

sensitive Universum SVM for modeling patient-1 data. To this 

end, we used two different types of Universa: interictal signals 

of other patients, and random averaging (RA). All Universum 

modeling results using interictal data from other patients 

showed similar (poor) performance, so we present (below) 

results only for the Universum formed using patient_20 

interictal data. A brief description of the experimental setting 

is provided below: 

 Number of training samples (seizures ‘1’,’2’ and ‘3’) ~ 6999 

(‘preictal’ ~ 537 and ‘interictal’ ~ 6462 samples). 

 Number of Universum samples ~ 7000 (2 types of 

Universa:  patient_20 interictal and RA). 

 Number of test samples (seizure ‘4’) ~ 2333 (preictal’ ~ 179 

and ‘interictal’ ~ 2154 samples) 

 Dimensionality of each sample = 54 (9 spectral bands   6 

electrodes). 

Following [25], we use an RBF kernel of the form

 2
( , ') exp 'K   x x x x . Further, SVM model selection is 

performed via 5-Fold cross-validation procedure  on the 

training data. Performance comparisons between standard 

SVM, cost-sensitive SVM and cost-sensitive U-SVM for two 

different types of Universa are shown in Table 10. For all the 

methods we have training error ~ 0%. Typical histograms of 

projections for training data along with the Universum data 

are also shown in Fig. 19. Visual analysis of these histograms 

of projections indicates that:  

 patient ‘20’ interictal has very narrow projections between 

the training samples’ class means . 

 Random Averaging  has well spread projections between the 

training samples’ class means. 

Hence, we can expect the RA Universum to be more effective 

than patient ‘20’ interictal. This is consistent with the empirical 

results in Table 10. 

5  CONCLUSIONS 

Previous studies [2-10] have demonstrated the effectiveness of 
the  Universum learning for improving the generalization of 
SVM classifiers. However, all these studies used balanced data 

sets with equal misclassification costs. This paper describes 
new U-SVM formulation that incorporates different 
misclassification costs and can be used for unbalanced data 
sets. The proposed cost-sensitive U-SVM can be implemented 

using minor modifications to existing U-SVM software. This 
modified software is made publicly available at [18]. 

We also presented practical conditions for the effectiveness 

of the cost-sensitive U-SVM using analysis of the histograms 

of projections. These proposed conditions also hold for 

unbalanced data sets typically seen in many 

biomedical/bioinformatics applications . These conditions can 

be adopted by practitioners because: 

1. They provide an explicit characterization of the properties 
of the Universum relative to the properties of labeled 
training data. These properties are conveniently 

represented in the form of the univariate histograms of 
projections; 

2. They directly relate  prediction performance of the cost-
sensitive U-SVM to that of cost-sensitive SVM. 

According to our analysis, meaningful characterization of 

‘good’ Universum is possible  only in the context of a 

particular labeled training dataset. This point is particularly 

important for biomedical applications, where predictive data -

analytic models are often patient-specific (as in the seizure 

prediction example in Section 4). In these  applications, there is 

no good medical/clinical intuition about good Universa. 

Hence, the proposed conditions (for the effectiveness of the 

Universum learning under cost-sensitive settings) are 

expected to be quite  useful.  

Finally, we point out that many applications involve 
extreme scenarios with very high cost ratios or extreme 
unbalance in the data (as in anomaly detection). Such problems 
follow a different learning framework called single-class 

learning [11, 15], and has not been explored in this work. 
Hence, there is a need for future research on the effectiveness 
of Universum learning under such extreme settings. 
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