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Introduction The advent of big-data has seen an emergence of research on scalable
machine learning (ML) algorithms and big data platforms [1]. Several software frameworks
have been introduced to handle the data deluge like, MapReduce, Hadoop, Spark etc. Among
them, Spark has been widely used by the ML community. Spark supports distributed
in-memory computations and provides practitioners with a powerful, fast, scalable and easy
way to build ML algorithms. Although there have been several Spark based ML libraries [3,
4], there are very few packages that cover a wide range of problems with fast and accurate
results. Authors in [2] have shown that ADMM based approach can be used as a general
framework to accurately solve several standard and variants of Linear, Logistic Regression
and SVM. However, [2] is limited to binary classification problems. In this paper, we extend
the ADMM based framework to solve multiclass `1/`2/`1-`2 regularized Logistic Regression,
SVM etc. Currently, none of the existing big-data libraries provide a solution to most of the
above multiclass algorithms. Hence, we compare our implementation with other available
Spark ML packages like, MLLIB [3] and PhotonML [4], only for binary `2 logistic regression;
and use our multiclass solver to solve the binary problem. We additionally report the time
complexity of our multiclass implementation for future references and comparisons. For the
accuracy of the solutions we use scikit-learn implementation as ground truth.
Approach Most multiclass ML algorithms follow the following composite optimization
formulation in eq. (1): Given training samples T := (xi, yi)N

i=1, where x ∈ Rd, and
y ∈ {1, · · · , C}. Solve,
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L(fw(xi), yi) + λR(z) s.t. w = z (1)

where, L(·) and R(·) are convex loss function and regularizer respectively. Eq.(1) allows
us to formulate wide variety of multiclass ML problems like `1,`2,`1-`2 Logistic regression,
SVM etc. In this paper we use an ADMM based approach to solve eq (1). The main idea
in an ADMM based approach is to introduce additional consensus variable(s) z in eq. (1)
and decompose the optimization problem into two separate sub-problems in w and z setting
w = z (shown in eq. (1)). A simple example for `1-`2 (elastic) multinomial logistic regression
using the above decomposition results in the following ADMM steps:
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Figure 1: (left) MNIST dataset, (center) Convergence for different implementations of L2-Logistic
Regression, (right) Computation time comparison between ADMM and PhotonML (std dev in
bracket) to reach relative error of 0.1
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ADMM based approach, provides a simple strategy to, (i) Plug in several Loss functions L(·),
like multinomial logistic, multi-class hinge etc ; as well as regularizers R(·) like, L1,L2,L1-L2
and (ii) Solve the composite problem by decomposing the overall larger problem into smaller
sub-problems (see eq. (2)). Following [2], it can be shown that the smaller sub-problems can
in turn be iteratively solved using a system of distributed quadratic programs (QP).
Experiment Settings Next, we compare the performance of ADMM vs MLLib and
PhotonML in terms of their model accuracy, convergence time and iteration. In this
experiment we only compare L2 logistic regression algorithm using 1G MNIST dataset (Fig.
1 left) for binary (5 vs 8) and multiclass (3 vs 5 vs 8). We assume scikit-learn’s solution
(wopt) as the ground truth and compare the relative accuracy of the estimated models (w∗)
i.e ‖w

opt−w∗‖
wopt . The hadoop cluster configuration follows: No. of Nodes = 6 (Apache 1.1.1),

No. of cores (per node) = 12 core (Intel Xeon @ 3.20GHz), RAM size (per node) = 32 GB,
Hard Disk size (per node) = 500 GB. Further, we use the following settings for ADMM:
ρ = 0.5, δ = 1. We use default parameters for MLLIB and PhotonML. λ is fixed to 1.
Results The results (in Fig 1 center) shows that the MLLib implementation does not
converge to the scikit-learn solution. We are investigating the cause of this behavior and
hence avoid any timing comparison with other packages. In comparison, both the Photon ML
and ADMM based implementation converge to the optimal solution. PhotonML uses LBFGS
and TRON for their fast and accurate solution. However, one caveat of using PhotonML is
that it requires an AVRO input format which incurs a huge timing overhead of ∼ 110 sec to
convert 1G data to AVRO format. However the underlying model estimation is extremely
fast ∼4 sec. On the other hand, the ADMM based approach although takes fewer iterations
to reach the same accuracy, but it is slower because of the QP solver in w - update. Further,
the current implementation of ADMM approach in pyspark incurs additional overhead due
to native calls to the underlying scala libraries. However, the current work extends the
available algorithms in [2] for multiclass problems and is probably the biggest repository of
distributed ML algorithms and can serve as a baseline for future research on big-data ML
algorithms. Moreover, the current implementation in pyspark (Python platform for Spark)
makes this distributed ML library easily accessible to the huge python based ML community.
Ongoing Work Currently we are extending our experiment results for other multiclass
loss functions like hinge loss etc. Finally, we are extending this generic framework to solve
several advanced learning problems that involve non-convex formulations.
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