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Introduction Many applications of machine learning involve analysis of sparse high-dimensional
data, where the number of input features is larger than the number of data samples. Such high-
dimensional data sets present new challenges for most learning problems. Recent studies have shown
Universum learning to be particularly effective for such high-dimensional low sample size data
settings [1–11]. However, most such studies are limited to binary classification problems. This
paper introduces universum learning for multiclass SVM [12] under balanced settings with equal
misclassification costs and propose a new formulation called multiclass Universum SVM (MU-SVM).
We provide empirical results in support of the proposed formulation.

Figure 1: Loss function for
universum samples for kth
decision function fk(x) =
w>k x. An universum sample
lying outside the ∆- insen-
sitive zone is penalized lin-
early using the slack variable
ζ.

Universum Learning for Multiclass SVM The idea of Univer-
sum learning was introduced by Vapnik for binary classification prob-
lems [13, 14] to incorporate a priori knowledge about admissible data
samples. Here, in addition to labeled training data we are also given
a set of unlabeled examples from the Universum which belongs to
the same application domain as the training data but are known not to
belong to either class. In fact, this idea can also be extended to mul-
ticlass problems. For multiclass problems in addition to the labeled
training data we are also given a set of unlabeled Universum examples.
However, now the Universum samples are known not to belong to any
of the classes in the training data. For example, if the goal of learning
is to discriminate between handwritten digits 0, 1, 2,...,9; one can
introduce additional ‘knowledge’ in the form of handwritten letters
A, B, C, ... ,Z. These examples from the Universum contain certain
information about handwriting styles, but they cannot be assigned to
any of the classes (1 to 9). These Universum samples are introduced
into the learning as contradictions and hence should lie close to the decision boundaries for all the
classes f = [f1, . . . , fL]. This argument follows from [14, 15], where the universum samples lying
close to the decision boundaries are more likely to falsify the classifier. To ensure this, we incorporate
a ∆ - insensitive loss function for the universum samples which forces the universum samples to
lie close to the decision boundaries (‘0’ in Fig. 1) for all the classes i.e. f = [f1, . . . , fL]. This
reasoning motivates the new multiclass Universum-SVM (MU-SVM) formulation where: 1) Standard
hinge loss is used for the training samples [12] 2) The universum samples are penalized by a ∆ -
insensitive loss (Fig. 1) for the decision functions of all the classes f = [f1, . . . , fL]. This leads to the
following MU-SVM formulation. Given training samples T := (xi, yi)

n
i=1, where yi ∈ {1, . . . , L}

and additional unlabeled universum samples U := (x∗j )
m
j=1. Solve 1,

min
w1...wL,ξ,ζ
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∑
l

‖wl‖22 + C

n∑
i=1

ξi + C∗
m∑
j=1

ζj (1)

s.t. (wyi −wl)
>xi ≥ eil − ξi; eil = 1− δil, i = 1 . . . n

|(wk −wl)
>x∗j | ≤ ∆ + ζj ; j = 1 . . .m, l, k = 1 . . . L

Here, the universum samples that lie outside the ∆ - insensitive zone are linearly penalized using
the slack variables ζj ≥ 0, j = 1 . . .m. The user-defined parameters C,C∗ ≥ 0 control the trade-off

1Throughout this paper, we use index i for training samples, j for universum samples and k, l for the class
labels.



Figure 2: Traffic Signs. (a) ’30’
(b) ’70’ (c) ’80’ (d) ’no-entry’.

Table 1: SVM vs. MU-SVM. Mean test error in %, over 10 runs.
(std. deviation in parenthesis).

SVM MU-SVM (‘no-entry’)
7.47(0.92) 6.57(0.59)

Figure 3: Typical histogram of projection of training samples (shown in blue) and universum samples (shown
in black). SVM decision functions for (a) sign ‘30’. (b) sign ‘70’.(c) sign ‘80’. (d) frequency plot of predicted
labels for universum samples for estimated SVM model. U-SVM decision functions for (e) sign ‘30’. (f) sign
‘70’.(g) sign ‘80’. (h) frequency plot of predicted labels for universum samples for estimated MU-SVM model.

between the margin size, the error on training samples, and the contradictions (samples lying outside
±∆ zone) on the universum samples.

Results For our empirical results we use German Traffic Sign Recognition Benchmark (GTSRB)
dataset [16]. The goal here is to identify the traffic signs ‘30’,‘70’ and ‘80’ (Fig. 2(a)-(c)) represented
by their histogram of gradient (HOG) features (∼ 1568 dimensions). Further, in addition to the
training samples we are also provided with additional universum samples i.e. traffic signs for ‘no-
entry’ (see Fig. 2d). For this experiment we use the following setting,
– No. of training/test samples = 300 (100 per class)/1500 (500 per class) respectively.
– No. of universum samples = 500 (additional samples did not improve performance).
Initial experiments suggest that linear parameterization is optimal for this dataset. Here, the model
selection is done over the range of parameters, C = [10−4, . . . , 103] , C∗/C = n

mL = 0.2 and
∆ = [0, 0.01, 0.05, 0.1] using stratified 5-Fold cross validation [17]. Performance comparisons
between SVM and MU-SVM are shown in Table 1. Table 1 shows that the MU-SVM model provides
better generalization than the multiclass SVM model. For better understanding of the MU-SVM
modeling results we adopt the technique of ‘histogram of projections’ originally introduced for
binary classification in [18, 19]. However, different from binary classification, here we project the
training samples onto the decision space for that class; and the universum samples onto the decision
spaces of all the classes. Additionally, we also generate the frequency plot of the predicted labels
for the universum samples. Fig 3 shows the typical histograms and frequency plots for the SVM
and MU-SVM models using the ‘no-entry’ sign (as universum). As seen from Fig. 3(a)-(c), the
optimal SVM model has high separability for the training samples i.e., most of the training samples
lie outside the margin borders with training error ∼ 0. Infact, similar to binary SVM [19], we see
data-piling effects for the training samples near the ‘+1’ - margin borders of the decision functions.
This is typically seen for high-dimensional low sample size settings. However, the universum samples
are widely spread about the margin-borders. Moreover, the universum samples are biased towards
the positive side of the decision boundary of the sign ‘30’ (see Fig 3(a)) and hence predominantly
gets classified as sign ‘30’(see Fig.3 (d)). As seen from Figs 3 (e)-(g), applying the MU-SVM model
preserves the separability of the training samples and additionally reduces the spread of the universum
samples. For such a model the uncertainity due to universum samples is uniform across all the classes
i.e. signs ‘30’,‘70’ and ‘80’ (see Fig. 3(h)). The resulting MU-SVM model has higher contradiction
on the universum samples and provides better generalization in comparison to SVM. Additional
results and analysis are available in [20].

Conclusion The results show that the proposed MU-SVM provides better performance than
multiclass SVM, typically for high-dimensional low sample size settings. Under such settings the
training data exhibits large data-piling effects near the margin border (‘+1’). For such ill-posed
settings, introducing the Universum can provide improved generalization over the multiclass SVM
solution. However, the effectiveness of the MU-SVM also depends on the properties of the universum
data. Such statistical characteristics of the training and universum samples for the effectiveness of
MU-SVM can be conveniently captured using the ‘histogram-of-projections’ method introduced in
this paper. This is open for future research.
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