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Abstract— This paper extends the idea of Universum learning 

to regression problems. We propose new Universum-SVM 
formulation for regression problems that incorporates a priori 
knowledge in the form of additional data samples. These 
additional data samples, or Universum samples, belong to the 
same application domain as the training samples, but they follow 
a different distribution. Several empirical comparisons are 
presented to illustrate the utility of the proposed approach. 

Keywords— Support Vector Regression; learning through 
contradiction; Universum Learning 

I. INTRODUCTION  
The technique of Universum learning or learning through 

contradiction [1, 2] provides a formal mechanism for 
incorporating a priori knowledge about the application domain, 
in the form of additional (unlabeled) Universum samples. 
Universum learning has been originally introduced for binary 
classification problems [2, 3] and it has been shown to be 
particularly effective for high-dimensional low-sample size 
data settings [3, 4, 5]. More recently, Universum learning has 
been extended to various non-standard classification settings 
[6-15]. However, most research on Universum learning has 
been limited to binary classification problems. It is not clear 
how to extend the idea of Universum learning to other types of 
learning problems. 

This paper describes Universum learning for supervised 
learning problem known as regression or real-valued function 
estimation from noisy samples [1, 2, 15 - 18]. Under regression 
setting, a real-valued output can be represented as the sum of 
(unknown) target function ( )t x  and an additive error term δ :  

    ( )y t δ= +x           (1) 

Here, data samples ( , )yx  follow an underlying (unknown) 
distribution described by the joint density function, 

( , ) ( | ) ( )p y p y p=x x x         (2) 

So the target function is the mean of the output conditional 
probability, 

( ) ( | ) t yp y d=x x x         (3) 

The goal of learning is to estimate the ‘best’ function (model) 
from  a  set  of approximating  functions ( , )f ωx parameterized  
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byω ∈ Ω . The quality of the approximation is measured by a 
given loss function ( , ( , ))L y f ωx . Thus, the problem of 
regression involves estimation of a real-valued function that 
minimizes the risk functional, 

( ) ( , ( , )) ( , )R L y f p y d dyω ω= x x x    (4) 

A common loss function for regression problems is the squared 
loss, 

2( , ( , )) ( ( , ))L y f y fω ω= −x x    (5) 

The difficulty of regression estimation is due to the fact that 
statistical distribution of ( , )yx  is unknown, and the only 
information (about it) is available in the form of finite training 
data set 1( , )n

i i iy =x . For regression problems, one can also 
expect to achieve improved generalization performance by 
incorporating a priori knowledge in the form of additional 
Universum samples. This paper introduces the concept of 
Universum learning for regression problems and provides new 
optimization formulation that incorporates additional 
Universum data into standard SVM regression setting. 

This paper is organized as follows. Section II reviews 
standard SVM regression (SVR) formulation [2, 18]. Section 
III introduces the new Universum-SVM regression (U-SVR) 
formulation. Section IV describes a new technique for 
understanding the effectiveness of U-SVR learning. Next we 
provide empirical results to illustrate the effectiveness of this 
new formulation in Section V.  Finally, Section VI presents 
conclusions.    

II. SVM REGRESSION 

This section provides a brief description of standard SVM 
regression (SVR) formulation following Vapnik [1, 2]. This 
SVR setting uses special margin-based loss function known as 
ε - insensitive loss ( ( , ), ) max( ( , ) ,0)L f y y fε ε= − −x w x w . 
This loss function is shown in  Fig. 1. Then SVR formulation 
can be stated as: 

Given i.i.d training samples 1( , )n
i i iy =x , with  d∈x , y ∈ ; 

the linear SVR model can be found by solving the optimization 
problem: 
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          (a)                           (b) 

Fig. 1. SVM regression (a) ε - insensitive loss function. (b) slack variables 
ξ  for linear SVM regression formulation. 

 
            (a)     (b) 

Fig. 2. U-SVM regression. (a) Two SVM regression models explain training 
data equally well, but have different number of contradictions on the 
Universum. The model with a larger number of contradictions (in black) is 
selected. (b) Loss function for the universum samples * *( ( ))j jU y fΔ − x   (with 

Δ  = 0.2 for illustration). 
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Here n  := number of training samples, and d  := 
dimensionality of the input space (or the number of input 
variables). Note that training samples falling inside the ε  - 
tube have zero loss, and samples outside the ε - insensitive 
zone are linearly penalized using the slack variables *, 0i iξ ξ ≥ , 

1i n=  (as shown in Fig. 1b). These slack variables 
contribute to the empirical risk for the SVR 

formulation *

1
( ) ( )

n

emp i i
i

R ξ ξ
=

= +w . The linear SVR 

formulation (6) has two tunable parameters that control model 
complexity, 0C ≥ and 0ε ≥ . Parameter 0C ≥  controls the 
trade-off between the empirical risk and the penalization term. 
Parameter ε  controls the size of the ε  - insensitive zone in 
margin-based loss. Notably, using tunable (data-dependent) 
parameter ε effectively implements margin-based loss for 
regression setting, and thus enables complexity control 
independent of dimensionality. According to [18], SVR 
regression model can ‘explain’ all training data samples falling 
inside ε - insensitive zone, but cannot explain samples outside 
this zone. So the goal of learning is to model (explain) most of 
the training data using SVR loss function with ‘small’ ε . That 
is, using small ε -values (for regression) is similar to large 
margin (for classification) [18]. 

III. UNIVERSUM-SVM REGRESSION 

A. Universum-SVM Regression formulation 
Consider regression setting where available training data 

1( , )n
i i iy =x  is modeled using linear SVR. As described in 

Section II, for SVR the concept of ‘margin’ is implemented via 
ε  - insensitive loss. That is, training samples falling inside ε  - 
insensitive zone are ‘explained’ by SVR model, and samples 
falling outside ‘falsify’ or ‘contradict’ this model. 

Next, consider two SVR models which explain training 
samples equally well, e.g. both SVR models use the same value 
of ε and achieve the same empirical risk  

*

1
( ) ( )

n

emp i i
i

R ξ ξ
=

= +w  for training samples. For example, Fig. 

2a shows two SVR models that explain available training data 
equally well, i.e. have zero empirical risk. Next, consider 
additional Universum  samples  * *

1( , )m
j j jy =x . These samples are 

defined in the same ( , )yx  space as the training samples, and 
reflect a priori knowledge that they should not be explained 
well by SVR model, i.e. should  lie outside the ε  - insensitive 
tube. For the toy example shown in Fig. 2a, we should favor 
the model shown in black, for which most Universum samples 
cannot be explained by SVR model. Note that for regression 
setting, Universum samples are labeled, unlike unlabeled 
Universum samples for classification. This motivates the new 
Universum support vector regression (U-SVR) formulation 
where: 

 Standard  ε  - insensitive loss is used for training samples.  

 Universum samples are penalized by a different loss 
function as shown in Fig. 2b. 

This new loss function forces the universum samples to lie ‘far 
away’ from the regression model, so that samples outside a  
±Δ  zone have zero loss. Penalization of universum samples 
inside the ±Δ  zone is achieved via the slack variables jζ  as 
shown in Fig. 2b. Note that the tunable parameter Δ can be 
larger (or smaller) than ε . This leads to the following 
optimization formulation for U-SVR: 

Given i.i.d. training samples 1( , )n
i i iy =x , with  d∈x , y ∈ , 

and additional universum samples * *
1( , )m

j j jy =x ; the linear U-
SVR model can be found by solving the optimization problem: 

*

*

, , , ,
min     ( , , , , )
b

L b =
w

w              (7) 

      (Training samples)                      (Universum samples) 
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Here, parameters: , 0ε Δ ≥  and *, 0C C ≥  control the tradeoff 
between ‘explanation’ of training samples and ‘falsification’ of 
the universum samples. This new optimization formulation for 
U-SVR has two additional tuning parameters: *C  and Δ , 
relative to standard SVR setting. Setting * 0C =  or 0Δ = in U-
SVR formulation yields standard SVR formulation (6). 

B. Computational Implementation of U-SVR 
The U-SVR formulation (7) is non-convex due to non-

convexity of the Universum loss *( ( ))j jU y fΔ − x  shown in 
Fig. 2b. Hence, it cannot be solved using standard convex 
solvers commonly used in machine learning.  Similar non-
convex optimization problems have been addressed in [19, 20] 
using the ConCave Convex Programming (CCCP) strategy. 
According to CCCP strategy, the non-convex cost function 

( )J θ  is decomposed as the sum of a convex part ( )vexJ θ  and 
a concave part ( )cavJ θ , where θ  is the optimization argument. 
Each iteration of the CCCP procedure approximates the 
concave part by its tangent and minimizes the resulting 
convex function (Algorithm 1). 

Algorithm 1: ConCave Convex Programming (CCCP) 
Initialize 0θ   
repeat 

          1 ( )
arg min  ( ( ) )t cav

vex

J
J

θ

θθ θ θ
θ

+ ∂
= + ⋅

∂
  

until convergence of θ   

Hence, we propose to apply the CCCP strategy for solving the 
non-convex optimization formulation (7). Detailed application 
of the CCCP strategy and the resulting algorithm for solving 
the U-SVM regression formulation (7) are presented next. 

The Universum loss function can be represented as a sum 
of two ramp losses, *( ( ))j jU y fΔ − x = * *( ( ))j jA y fΔ − x  + 

* *( ( ) )j jA f yΔ −x  + a constant (see Fig. 3a); where ( )A tΔ = 
max(0, ) max(0, )t tΔ − − −  (see Fig. 3b). The constant term 
does not affect the optimization; and hence (7) can be re-
written as, 

* *

* * *

, , , , , 1 1

1min   ( )    ( )   ( )
2

n m

i i j j
b i j

C Cξ ξ ζ ζ
= =

⋅ + + + +
w

w w   

 * *

1
( , ( ))

m

j j
j

H y f
=

− x           (8) 

      s.t.    ( )i i iy b ε ξ− ⋅ − ≤ +w x    0iξ ≥  
*( )i i ib y ε ξ⋅ + − ≤ +w x  * 0iξ ≥  

* *( )j j jy b ζ− ⋅ − ≤ −Δ +w x   0jζ ≥  
* * *( )j j jb y ζ⋅ − − ≤ −Δ +w x   * 0jζ ≥  

1 ,       1i n j m= =   
where, 

* *( , ( ))j jH y f =x

 * * * *max(0, ( ) ) + max(0, ( ) ) j j j jy b y b− + ⋅ + − ⋅ −w x w x   

        
                (a)          (b) 

Fig. 3. (a) Universum loss as the sum of two ramp losses * *( ( ))j jA y fΔ − x   

and * *( ( ) )j jA f yΔ −x . (b) Decomposition of * *( ( ))j jA y fΔ − x  as the sum of a 

convex and concave loss. 
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w
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Hence, application of the CCCP strategy to solve formulation 
(7) yields the following Algorithm 2.  

Algorithm 2: CCCP algorithm for U-SVR 
1. Initialize 0 0( , )bw  using standard SVR model (see eq. (6)) 
repeat 
      2.  At 1t + iteration update, 

           

* * *

1 * * *

  ;       ( )   and   1
 ;    ( )    and   1

0            ;  else                                     

t t
j j

t t t
j j j

C if y b j m
k C if y b j m+

− < ⋅ + =
= > ⋅ + =

w x
w x  

      3. Solve the following eq. (8) to obtain 1 1( , )t tb+ +w   

        
* *

*

, , , , , 1

1min   ( )    ( )
2

n

i i
b i

C ξ ξ
=

⋅ + +
w

w w  

                       * * 1 *

1
+ ( ( ))

m
t

j j j j
j

C k bζ ζ +

=

+ − ⋅ +w x  

                s.t.   ( )i i iy b ε ξ− ⋅ − ≤ +w x    0iξ ≥  
         *( )i i ib y ε ξ⋅ + − ≤ +w x  * 0iξ ≥  
         * *( )j j jy b ζ− ⋅ − ≤ −Δ +w x        0jζ ≥  

         * * *( )j j jb y ζ⋅ − − ≤ −Δ +w x        * 0jζ ≥  
          1 ,       1i n j m= =   

until convergence i.e. 1      1t t
j jk k i n n m+ = ∀ = + +  
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The Algorithm 2 can be extended to nonlinear case by 
transforming the problem to dual form (as shown next). 
Rewrite, 

 

*

     1      (training samples)                      (9)    
     1  ;   1    (universum samples)

i
i

j

i n
j m i n n m

=
=

= = + +
x

x
x

 

 

*

     1                                  
     1  ;   1    

i
i

j

y i n
y

y j m i n n m
=

=
= = + +

 

    1          
   1i

i n
i n n m

ε
ρ

=
=

−Δ = + +
 

*

          1          
     1  i

C i n
C

C i n n m
=

=
= + +

 

*        ( )       1
0                                                               

i i
i

C if y f x and i n n m
else

δ < = + +
=   

*         ( )       1  
0                                                          

i i
i

C if y f x and i n n m
else

γ > = + +
=  

Hence, we obtain the following Algorithm 3 in dual form. The 
derivation is based on standard KKT conditions and is not 
shown in this paper. 

Algorithm 3: CCCP algorithm for U-SVR in dual form 
1. Initialize 0 0 0 )( , ,bα β using the standard SVR (in dual form) 
repeat 
      2.  At 1t + iteration update, 

           
*

1 1
    ( )( )

0   ,   1            

n m t t
i i i it

ii

C if y x x b

else i n n m

α β
δ

+

+ =
< − ⋅ +

=
= + … +

 

          
*

1 1
    ( )( )

0   ,   1            

n m t t
i i i it

ii

C if y x x b

else i n n m

α β
γ

+

+ =
− ⋅ +

=
>

= + … +
 

      
      3. Solve the following eq. (10) to obtain 1 1 1( , , )t t tbα β+ + +  

       
, , 1

1 1

   

              

1  min ( )( ) ( )
2

( ) ( )

n m

i i j j i j
i j

n m n m

i i i i i i
i i

K

y

α β
α β α β

ρ α β α β

+
⋅

=

+ +

= =
+

− −

+ − −

x x
  

         s.t.       
1 1

n m n m

i i
i i

α β
+ +

= =
=         1  i n m= +                 (10) 

                     t t
i i i iCγ α γ− ≤ ≤ − ;  t

i

t
i i iCδ β δ− ≤ ≤ −  

until convergence i.e. 1 1,    1t t t t
j j j j i n n mδ δ γ γ+ += = ∀ = + +  

This CCCP based minimization may have local optima, so 
a good initialization and stopping criteria are critical for this 
algorithm. In our implementation, standard SVR model 
(estimated from training samples) is used as the initial 
condition (for Algorithms 2 & 3). Thus the CCCP strategy 
searches for local minima near the SVR solution. Further, at 
each iteration we solve an SVR-like formulation (see eq. 10). 
The only difference is in the constraints. That is, the dual 

variables in U-SVR formulation (10) have different upper and 
lower range values, as compared to standard SVR formulation. 
Hence, the time complexity for solving the U-SVR 
formulation using CCCP is similar to solving a standard SVR 
formulation with ( )n m+  samples at each iteration. A more 
detailed analysis on the convergence of the generic CCCP 
algorithm is available in [21, 22]. Further, analysis shown in 
[22] guarantees at least linear convergence to stationary points 
for the U-SVR formulation (7). In fact, our own experience 
indicates fast convergence (2-5 iterations) for many data sets. 
So this strategy should be scalable for most real-life data sets.  

The kernelized version of U-SVR formulation has five 
tunable parameters: C , *C kernel parameter, ε  and Δ . So 
model selection (parameter tuning) becomes an issue for real-
life applications. In this paper, we propose a simple two-step 
strategy for U-SVR model selection: 

1. Model selection for standard SVR regression. This step 
performs estimation of standard SVM regression model 
using only training samples. Following [23], we can 
select C parameter analytically, e.g. by setting 

max minC y y= −  , and then perform tuning of ε  and kernel 
parameters via resampling or separate validation data set. 
These tuning parameters for U-SVR formulation (7) 
depend only on the training data (not on Universum data). 

2. Model selection for tuning two Universum-specific 
parameters. This step performs selection (or tuning) of 
parameters *C C  and Δ  specific to the U-SVR 
formulation, while keeping ,C ε  and kernel parameters 
fixed (as obtained in Step 1). This can be performed using 
a separate validation set or via resampling. 

IV. GENERATING UNIVERSUM DATA AND  UNDERSTANDING 
UNIVERSUM-SVM REGRESSION 

Generally, Universum contains data samples from the 
same application domain as available training data. For 
example, for handwritten digit recognition application one can 
use examples of handwritten letters as Universum data 
samples, along with examples of handwritten digits used as 
training data [4]. Notably, Universum samples follow a 
different distribution than the training data.  

For many real-life applications, Universum data is readily 
available. However, selection of good Universum requires 
application-domain knowledge. An alternative strategy is to 
generate synthetic Universum directly from available labeled 
training data – similar to synthetic Universum for 
classification [3]. Next, we introduce several strategies for 
generating synthetic Universum under regression setting. 

Note that Universum samples for regression are labeled, 
unlike unlabeled Universum samples under classification 
setting. Hence, under regression setting, the distribution of 
Universum samples can be different from the distribution of 
x  - values (of the training data) or their y  - values or both. 
This observation motivates several practical strategies for 
generating synthetic universum from training samples:  
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Fig. 4. Representation of the histogram of residuals ( )y f− x  for regression 
models. Training samples are shown in blue and Universum samples in black.  
The estimated ε±  and ±Δ  values are shown in black and green lines 
respectively. 

Strategy 1: keep the marginal distributions of x  and y values 
fixed, but change the underlying conditional 
distribution ( | )p y x . For example, randomly select any two 
samples from the training data 1 1( , )yx  and 2 2( , )yx , such that 

1 yy μ≥  and 2 yy μ≤ ; where yμ is the mean of the y - values 
of training samples. Next, permute the samples to create two 
new universum samples, i.e. 1 2( , )yx and 2 1( , )yx . 

Strategy 2: change the distribution of the y - values of 
training samples. For example, randomly select a training 
sample ( , )yx and then replace its y - value as ( , )y yy μ σ′   
(normal distribution), where yμ  and yσ are the mean and 
standard deviation of y - values of the training data.  

Each of these strategies modifies the overall distribution of 
the ( , )yx - values of the training data. So these strategies yield 
universum data having distribution different from the training 
data and should be falsified by the U-SVR formulation (7). 
Section V, shows empirical results for the U-SVR method 
using Universum generated using these strategies. Other 
strategies that involve changing both x and y - distributions of 
training data can be easily designed, but they are not discussed 
here due to space constrains. 

Further, for better understanding of the U-SVR modeling 
results we adopt the technique known as ‘histogram of 
projections’ originally introduced for SVM classification 
setting [17, 18, 24]. Under classification setting, the ‘projection 
value’ for a given input measures its distance from SVM 
decision boundary. For regression, a similar quantity is the 
residual ( )y f− x  that measures the difference between 
response y  and its estimate ( )f x . So for regression models 
we use the univariate histogram of residuals ( )y f− x , where 

( )f x is the trained regression model. A typical histogram of 
residuals for trained SVR model is shown in Fig. 4. In addition, 
Fig. 4 also shows projections of the residual values * *( )y f− x  
of universum samples. Similar to methodology developed for 
U- SVM classification, visual interpretation of the histograms 
of residuals for training data and Universum data can be used 
for understanding the effectiveness of Universum under 
regression setting. In particular, Fig. 4 shows the effect of data 
piling or clustering of residual values for training samples near 
the ε±  boundaries, which is similar to data piling at the 
margin borders for SVM classification [17, 18, 24]. This data 

piling effect is typically observed for ‘small-sample’ regression 
data sets corresponding to very ill-posed estimation problems 
[25]. For such ill-posed settings, introducing additional 
constraints (in the form of Universum data) usually improves 
the quality of the estimated models. For example, assuming the 
distribution of residuals for Universum samples (relative to 
standard SVR model) is as shown in Fig. 4, application of U-
SVR is expected to modify/improve the original SVR model 
by pushing the Universum samples further away from a 
regression model, according to Universum loss function 
(shown in Fig. 2b). 

V. EMPIRICAL RESULTS 

A. Synthetic Hypercube dataset 
Our first experiment uses a synthetic 30-dimensional 

hypercube data set, where each input is uniformly distributed 
in [0, 1] interval. The output is generated as:  

1 5 6 10 30          y x x x x x δ= + + − − − + − +  

where, the noise is Gaussian: (0, )δ σ I . For this data set, 
we use linear SVR parameterization and consider two different 
types of universum. 

Universum 1: input samples follow the same distribution as 
training samples, e.g., 30∈x  and uniformly distributed in [0, 
1]. The output is generated by changing the sign i.e.,   

1 5 6 10 30    y x x x x x= − − − + + + − +  

Universum 2: following strategy 2 for generating synthetic 
universum, we randomly select a training sample ( , )yx  and re-
set its y - value as ( , )y yy μ σ′   (normal distribution), 
where yμ  and yσ are the mean and standard deviation of y - 
values of the training data. 

The experimental setting is specified below: 

 No. of training and validation samples = 30, 150 
(characterizing low and high sample-size settings, 
respectively. The number of validation samples is always 
set to be the same as the number of training samples. This 
independent validation set is used for model selection). 

 No. of test samples = 5000. 

 No. of universum samples = 300. 

We consider two additive noise levels  σ  = 0.5 and 2, in order 
to capture the effects of low and  high noise levels respectively. 
For the high sample size setting we provide the results for σ = 
0.5 only. Experiments involving high noise conditions for high 
sample size settings did not yield any additional improvement 
when using the U-SVR formulation.  

Performance results in Table 1 show the average 
Normalized Root Mean Squared ( NRMS = 

2
1

ˆ(1 ) ( )

( )

n

i
n y y

std y
=

−
 ) error for training and test data observed 

over 25 random experiments. Here, n  = no. of samples, and ŷ    
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                (a)                  (b) 

Fig. 5. Histogram of residuals for training samples (in blue) and Universum 1 
samples (in black) with no. of training samples n  = 30 and σ   = 0.5. (a) 
histogram for standard SVR model (C = 6.73, ε  = 0.5) (b) histogram for U-
SVR model ( *C C   = 0.05, Δ  = 2). 

    
         (a)                     (b) 

Fig. 6. Histogram of residuals for training samples (in blue) and Universum 1 
samples (in black) with no. of training samples n  = 30  and σ  = 2. (a) 
histogram for standard SVR model ( C =  14.5, ε  = 2) (b) histogram for U-
SVR model ( *C C  = 0.001, Δ  = 16). 

denotes estimated output values. For each experiment we 
randomly select the training/validation/test set. The standard 
deviation of the NRMS values (over 25 experiments) is shown 
in parenthesis. These empirical results in Table I indicate that 
for low-sample settings introducing Universum can indeed 
improve prediction performance, especially for low-noise 
settings. However, for high-sample size settings introducing 
Universum does not yield any improvement relative to 
standard SVR or ridge regression. 

These modeling results for U-SVR can be understood using 
the ‘histogram-of-residuals’ technique described in Section 4.  
Actual histograms of residuals for the synthetic hypercube 
dataset are shown in Figs 5, 6 and 7. Figs. 5(a)-(b) show the 
histograms for the estimated SVR and U-SVR models under 
low sample size, low noise settings. The histogram clearly 
shows the effect of data piling for training samples, and also 
shows that the distribution for Universum 1 data is unimodal 
and centered around the SVR model (marked as the point ‘0’ 
on x-axis in Fig. 5a). Therefore, we can expect that introducing 
Universum 1 will change/improve the regression model. This is 
confirmed by analyzing the histograms of residuals for the 
trained U-SVR shown in Fig. 5b, which shows the effect of 
pushing Universum 1 samples away from the estimated 
regression model. Specifically, for the SVR model (in Fig. 5a), 
the fraction of universum samples lying within the ±Δ   zone is 
~ 92% and that for the U-SVR model (in Fig. 5b) is ~ 85%. 
Hence, the U-SVR model increases the number of 
contradictions for the universum samples and improves the 
prediction performance (relative to standard SVR), which is 
consistent with results in Table I. Next, we analyze histograms 
of residuals for the low sample size, high noise ( n =30, σ =2) 
data shown in Figs. 6(a)-(b). In this case, the data piling effect 
for standard SVR model is less strong (as compared to low-
noise setting in Figs. 5(a).  Further,  visual  comparison  of  the  

 
  (a)                  (b) 

Fig. 7. Histogram of residuals for training samples (in blue) and Universum 1 
samples (in black) with no. of training samples n  = 150 and σ   = 0.5. (a) 
histogram for standard SVR model (C = 9.65, ε  = 0.25) (b) histogram for U-
SVR model ( *C C   = 0.5, Δ  = 1). 

TABLE I.  COMPARISON OF TEST ERROR FOR DIFFERENT UNIVERSUM. 

NRMS 
(in %) 

Ridge 
Regression SVR U-SVR 

(type 1) 
U-SVR 
(type 2) 

low sample size ( 30n =  ), low noise ( 0.5σ =  )  
Test 54.5 (9.3) 55.3 (9.1) 47.7 (7.9) 53.7 (9.6) 

Training  21.3 (9.3) 20.5 (9.5) 20.2 (8.7) 20.3 (8.9) 
low sample size ( 30n =  ), high noise ( 2σ =  ) 

Test 97.1 (10.2)    97.6 (11.8) 92.6 (16.3) 97.4 (13.9) 
Training  74.1 (17.8) 79.4 (17.1) 76.5 (12.9) 79.9 (23.4) 

high sample size ( 150n =  ), low noise ( 0.5σ =  ) 
Test 15.8 (0.8) 16.2 (2.1) 16.4 (2.1) 15.9 (2.2) 

Training  14.7 (1.6) 14.6 (1.3) 14.9 (1.3) 14.4 (1.4) 
 

histograms for the SVR and U-SVR models suggests no 
significant change in the fraction of Universum samples within 
the ±Δ   zone. Hence, we can expect only minor or no 
improvement in the prediction performance for U-SVR, which 
is confirmed by results in Table I. Finally, consider large 
sample size, low noise settings ( n  = 150, σ = 0.5). Having 
large number of training samples yields very accurate SVR 
models. For such data sets, we do not observe the data piling 
effect at the ε±  values (see Figs. 7(a)-(b)), so we expect no 
improvement from introducing Universum data (see Table I). 
These experiments show that, U-SVR is particularly effective 
for very sparse settings (~ high-dimensional and low sample 
size) under low noise conditions. Under such settings, the 
training data exhibits large data-piling near the ε± margins for 
the SVR model, and introducing the Universum usually helps 
to improve the prediction performance. With increased noise 
level, the data-piling effect decreases and the U-SVR yields no  
improvement over the SVR solution. Finally, when the number 
of training samples is large, the estimation problem becomes 
well-posed and  SVR model does not exhibit any data-piling at 
the ε±  margins. In this case, application of U-SVR does not 
provide any improvement. The histograms for Universum 2 do 
not provide additional insights, and have been omitted from 
this paper. 

The next experiment follows the same experimental set up 
for 30-dimensional hypercube data set under low-sample size 
setting as above, except that the additive noise level is set to 
zero (σ  = 0). Based on our previous discussion, this data set is 
expected to show the most significant improvement in 
prediction performance of U-SVR (relative to standard SVR).  
Table II shows performance comparisons, suggesting that U-
SVR (using Universum 1) indeed provides very significant 
improvement over standard SVR solution. 
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TABLE II.  COMPARISON OF AVERAGE  TEST ERROR FOR DIFFERENT 
UNIVERSUM WITH  ( 30n = ) AND ZERO NOISE. 

NRMS 
(in %) 

Ridge 
Regression SVR U-SVR 

(type 1) 
U-SVR 
(type 2) 

Test 15.9 (10.3) 17.5 (10.2) 7.3 (6.9) 17.4 (10.2) 
Training  0.15 (0.01) 1.6 (2.4) 0.4 (1.0) 1.2 (1.6) 

TABLE III.  COMPARISON OF TEST ERROR WITH VARYING UNIVERSUM 
SAMPLE SIZE. NRMS (IN %)  FOR SVR = 56.98 (9.06). 

NRMS 
     (in %) 

Number of Universum samples 
m=50 m=100 m=300 m=500 

U-SVR (type1) 55.3 (8.5) 52.7 (6.5) 47.1 (9.0) 47.1 (9.1) 
U-SVR (type2) 55.0 (11.1) 56.7 (9.8) 56.6 (9.1) 56.3 (9.1) 
 

Finally, our last set of experiments demonstrates the 
generalization performance of U-SVR with increase in 
universum data samples. We use the same synthetic hypercube 
data  set under small sample size low noise setting, and vary 
the Universum sample size (shown in Table III). These results 
indicate that for sufficiently large number of universum 
samples the effectiveness of U-SVR depends mostly on the 
type (~ statistical characteristics) of the universum data. 
Similar to classification settings [4, 5], the effectiveness of 
Universum for regression problems depends on the statistical 
characteristics of both the training and the universum data sets. 
Hence, there is a need for additional research aimed at better 
understanding and statistical characterization of ‘good’ 
universum data sets. 

B. Real world datasets 
Next we provide empirical results on several publicly 

available real-world datasets. The datasets include, 

Computer Hardware (CPU) [26]: The goal for this dataset is 
to predict the published relative CPU performance using 
several other CPU properties. Here, the categorical variable 
vendor_name has been transformed to a binary representation. 
Further, the y - values have been scaled as log(1 + y). 

Diesel dataset [27]: The goal here is to predict the total 
aromatics of the fuel sample using the NIR spectra of diesel 
fuels ranging from 750 to 1550 nm, discretized into 401 
wavelength values. The dataset has 784 samples of which 389 
samples have missing measurements for total aromatics. In 
this experiment we remove the samples with missing values.  

Kelly Blue Book (KBB) dataset [28]: The goal here is to 
predict the retail price of used 2005 GM cars based on a 
variety of characteristics such as mileage, make, model, 
engine size, interior style, and cruise control etc. Here, the 
categorical variables make, model, trim have been transformed 
to a binary representation. Further, the y - values have been 
scaled as log(1 + y).   

Vilmann's Rat dataset [29]: The dataset contains the skull X-
ray images of 21 different rats, represented using 8 - 
landmarks for 2-dimensions. The skull X-ray images are 
available for each rat at ages: 7, 14, 21, 30, 40, 60, 90 and 150 
days i.e. a total of (21 x 8) = 168 samples.  The task is to 
predict the ontogenetic development (age) of a rat using the X- 
ray  images. The  dataset  contains  4 missing  data which have  

TABLE IV.   EXPERIMENT SETTINGS FOR REAL WORLD DATASETS. 

Dataset # training/ 
validation # test # universum dimension 

CPU 50/50 109 200 36 
Diesel  100/100 195 200 401 
KBB 200/200 404 200 97 
Rat 40/40 84 200 16 

TABLE V.  RESULTS ON REAL WORLD DATASETS. THE 1ST AND 2ND ROWS 
PROVIDES NRMS (IN %) AND TYPICAL PARAMETERS RESPECTIVELY. 

Data SVR U-SVR (type1) U-SVR (type2) 

CPU 

55.01 (7.24) 
 
[C ~ 4.5 , ε =0.1,1] 

 

52.2 (5.8) 

[
*C

C
= 2-4-20, 

Δ = 2-2-20] 

54.2 (6.6) 

[
*C

C
 = 2-6, Δ = 2-1] 

 

Diesel  
26.1 (12.3) 

 
[C ~ 31, ε = 2-1] 

24.1 (9.7) 

[
*C

C
 = 2, Δ = 22 -24] 

22.03 (8.7) 

[
*C

C
 = 2, Δ = 1,4] 

KBB 

10.6 (2.4) 
 

[C ~ 2, ε = 0.01] 
 

9.47 (1.4) 

[
*C

C
= 2-6, Δ =0.01-1] 

 

9.48 (1.4) 

[
*C

C
= 2-6, Δ = 0.05 

-0.8] 

Rat 

26.1 (3.1) 
 

[C ~ 143, ε = 4, 8] 
 

25.7 (2.6) 

[
*C

C
 = 2-3 - 2-1, 

Δ = 25 - 26] 

24.8 (2.7) 

[
*C

C
 = 0.5, 

Δ = 25 - 26] 
 

been removed from the analysis. Finally, the x  -values of the 
training data have been pre-scaled uniformly to the same 
range [-1, 1] for all datasets. This pre-processing is necessary 
for all SVM-based methods [18]. 

For our experiments, we use two types of synthetic 
universum generated from the training data, i.e. following 
Strategy 1 (Universum 1) and Strategy 2 (Universum 2) as 
described in Section IV. The number of universum samples is 
selected to be sufficiently large, so that additional increase in 
universum samples does not provide any improvement. Table 
IV provides detailed description of the experimental setting 
used. Further, our initial experiments suggest that linear SVM 
parameterization is appropriate for the first three datasets. 
However, for the Rat dataset we use an RBF kernel of the 
form 

2

2
( , ) exp( )i j i jK γ= − −x x x x  with 3 22 2γ − −= −  . 

Performance comparisons between SVR and U-SVR 
models over 10 random partitioning of the data into training, 
validation and test data sets are shown in Table V. Table V 
provides the average NRMS values for test data sets. The 
standard deviation is shown in parenthesis. Further, Table V 
also provides the typical optimal SVR and U-SVR model 
parameters. These parameters are selected using the two-step 
strategy described in section III B, where tuning parameters 
are selected using separate validation data (see Table IV). 
These modeling results suggest that U-SVR provides 
improved generalization over standard SVR. However, the 
level of improvement depends on the characteristics of the 
training data and the Universum types. The effectiveness of 
introducing Universum data can be analyzed using the 
‘histogram-of-residuals’ technique that shows the distribution 
of the Universum data relative to the distribution of residuals 
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of training samples. This analysis is omitted due to space 
constraints.  

VI. CONCLUSION 
This paper extends the idea of universum learning to 

regression problems and provides new Universum Support 
Vector Regression (U-SVR) formulation. This U-SVR 
formulation is non-convex and cannot be solved using 
standard convex solvers. This paper adopts the method of 
ConCave Convex Problem (CCCP) and provides a new 
algorithm (Algorithm 1 & 2) for solving the proposed U-SVR 
formulation. Following this strategy, the current U-SVR 
formulation can be solved by several iterations of standard 
SVM-like optimization problem. 

Moreover, the proposed U-SVR formulation has 5 tunable 
parameters: C , *C , ε , Δ   and kernel parameter. Hence a 
successful practical application of U-SVR depends on the 
optimal selection of these model parameters. We propose 
simple two-step strategy for model selection where optimal 
model parameters for standard SVR are estimated first, and 
then model selection for U-SVR involves tuning only two 
remaining parameters *C C   and Δ . Such a two-step strategy 
significantly simplifies model selection for U-SVR. 

Finally, the paper provides empirical results to show the 
effectiveness of the proposed U-SVR over standard SVR. Our 
results suggest that U-SVR is particularly effective for high-
dimension low (training) sample size settings. Under such 
settings, the SVR model exhibits significant data piling of the 
training samples near the ε±  margin. For such ill-posed 
settings, introducing the Universum can provide improved 
generalization over the standard SVR solution. However, the 
effectiveness of U-SVR depends on the statistical 
characteristics of both the training and Universum data. These 
statistical characteristics can be conveniently captured using 
the `histogram-of-residuals' method introduced in this paper. 
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