
 Generic Multiclass Formulation

Given training samples where and

no. of observations (samples) dimensions. Total classes

Solve,

where, loss function, regularization.

 Multinomial Logistic Regression ADMM Step (k+1th iteration):

‒

‒

‒

Here, and

Remarks

‒ ADMM decomposes a larger problem into two (or many) smaller sub-problems in

variables

‒ Computation overhead due to big-data is handled in the -step in a distributed

fashion,

‒ Many multiclass ML algorithms can be solved using a simple distributed QP solver.

ADMM: - step

 Big-Data capability provides advantage by harnessing sophisticated insights relevant to

various real-life applications.

 Spark’s distributed in-memory computing framework provides practitioners with a

powerful, fast, scalable and easy way to build big-data ML algorithms.

 However, existing large-scale ML tools on Spark such as : MLlib [1] or PhotonML [2]

provide limited coverage for multi-class problems and sometimes inaccurate solutions.

 This work extends “ ADMM based scalable machine learning on Spark ” [3] to handle

large-scale machine learning for multi-class problems.

Scalable Machine Learning on Spark for Multiclass Problems
Goutham Kamath1*, Sauptik Dhar2, Naveen Ramakrishnan2, David Hallac3, Jure Leskovec3, Mohak Shah2,4

1Georgia State University, GA 2Robert Bosch Research and Technology Center, CA 3Stanford University, CA 4University of Illinois at Chicago, IL
Emails: gkamath1@student.gsu.edu {jure, hallac}@cs.stanford.edu {sauptik.dhar, naveen.ramakrishnan, mohak.shah}@us.bosch.com

Introduction and Motivation

Existing state-of-the-art technologies

 Distributed Algorithms

First Order methods : use first order gradient estimates, secant approximates etc.

‒ Low per-iteration computation complexity,

‒ Dimension independent convergence,

However,

‒ Slower convergence due to oscillations,

‒ Not well suited for ill-conditioned problems typically seen in Machine Learning,

E.g. Parallel SGD [4], Hogwild! [5], Splash [6].

Second Order methods : use additional second order Hessian (approximate) information.

‒ Captures the curvature of the objective function,

‒ Faster convergence rate than first order methods,

‒ Well suited for ill conditioned problems seen in Machine Learning,

However,

‒ Do not scale favorable with dimension,

‒ High per-iteration computation complexity.

E.g. ADMM [7], DANE[8] etc.

 Randomized Algorithms: uses a subsampled or low rank representation of the original

big-data to solve a small-scale equivalent problem.

‒ Can be solved using traditional ML software,

‒ Avoids the need for distributed storage/analytics systems.

However,

‒ Inexact/approximate solutions depends on data property. E.g. LOCO [9]

 We propose a generic multi-class formulation and adopt the second order Alternating

Direction Method of Multipliers (ADMM) to obtain more accurate solutions without

compromising on computational efficiency.

Our Approach

1: (,)N

i i iT y  x
Dx {1, , }y C

1
1

1

1

1
min ((),) ()

C
C

N

i i C

i

L f y R
N




 w w
w w

x w w

1
1 1

1
,

1

1
min ((),) () . . {1 }

C
C C

N

i i C c c

i

L f y R s t c C
N




     w w
w w z z

x z z w z

() :L   () :R  

Methods Loss Function Regularizer

Multiclass Classification

with

L1, L2, L1-L2 regularized

multinomial regression

L1, L2, L1-L2 SVM

,((),)b i iL f yw x ()R w

 Supported Multiclass Algorithms

Experimental Results

Hadoop Configuration (Apache 1.1.1)

 No. of Nodes = 6

 No. of cores (per node) = 12 (Intel @3.20GHz)

 RAM size (per node) = 32 GB

 Hard Disk size (per node) = 500 GB

Spark Configuration (Apache 1.6)

 spark.num.executors = 17

 spark.executor.memory = 6 GB

 spark.driver.memory = 4 GB

 spark.driver.maxResultSize = 4 GB

 Synthetic Data Set (Binary Classification used in [3])

Methods ADMM MLlib

Data Set size = 5GB with N = 200000, D =100

L2-logistic regression () 157.57(0.04) 139.68(2.06)

L1-logistic regression () 157.05(1.54) 266.9(169.16)

Data Set size = 50GB with N = 2000000, D =100

L2-logistic regression () 13937.3 (10.34) 14045.7 (411.78)

L1-logistic regression () 15381.8 (5.59) 13155.2 (307.60)

0.1  0 

0.1  1 

0.1  0 

0.1  1 

Methods ADMM PhotonML

Binary

(5 vs. 8)

321.54

(12.52)

118.81

(1.39)

Multiclass

(3 vs 5 vs 8)

1229.56

(50.44)

N/A

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Iteration

R
el

at
iv

e
E

rr
o

r

MLLIB

ADMM

PhotonML

References:
[1] MLlib http://spark.apache.org/MLlib/

[2] PhotonML https://github.com/linkedin/photon-ml

[3] S. Dhar, C. Yi, N. Ramakrishnan, M. Shah, "ADMM based scalable machine learning on Spark." IEEE

Big Data, 2015.

[4] M. Zinkevich et al. "Parallelized stochastic gradient descent." Advances in Neural Information

Processing Systems. 2010.

[5] B. Recht et al. "Hogwild: A lock-free approach to parallelizing stochastic gradient descent." Advances in

Neural Information Processing Systems. 2011.

[6] Y. Zhang, M. Jordan, “Splash: User-friendly Programming Interface for Parallelizing Stochastic

Algorithms”. (http://arxiv.org/abs/1506.07552).

[7] S. Boyd et. al, “Distributed optimization and statistical learning via the alternating direction method of

multipliers.” Foundations and Trends® in Machine Learning 3.1 (2011): 1-122

[8] S. Ohad, et. al., “Communication-Efficient Distributed Optimization using an Approximate Newton-type

Method.” ICML. Vol. 32. No. 1. 2014.

[9] B. McWilliams et al. “LOCO: Distributing ridge regression with random projections.”

(https://arxiv.org/abs/1406.3469)

[10] Scikit-Learn http://scikit-learn.org/stable/

1
1 log()

T T
i yi i c

C

i c
N e e

 
x w x w

1 ((1) ())
i i

T

y c i y ci
N     x w w

2

11

(1)
2

DC jc
jc jc

jc

  


  
   

  

w
w

[0,1] 

Table 1. Average time performance over 10 experiments in sec (std. deviation shown in parenthesis).

Table 2. Time performance (in sec)

 Real-Life MNIST Handwritten Digit Recognition Data(~ 1GB .csv format)

:N  :D 

w

,w z

w

Discussion

‒ Fig. 1 shows the relative error of the estimated models () i.e. compared

to the scikit-learn [10] solution ().

‒ Fig. 1 shows MLlib (packaged with Spark) fails to provide optimal solutions.

‒ PhotonML provides very fast and accurate algorithms, but limited to AVRO data

formats, which incurs additional overhead for data conversion.

‒ ADMM provides optimal solutions (see Fig. 1) without compromising on computational

efficiency (Table 1 & 2).

‒ However, ADMM convergence is very sensitive to updates.

‒ Current ADMM solution provides biggest generic repository of efficient distributed

machine learning algorithms available in Python.

Fig. 1. Solution Convergence

:C 

10

1 0.2 0.2

0.2 0.2 0

0.2 0.2 1

0

 
 
 

 
 
  
 

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

 1

 ,1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

 , 0,0,0,]

remaining 80% sparse group

group

group g

     

    

w (,)D  x 0 ()Ty sign  w x

Small Data (~5GB) , N = 200000

Big Data (~50GB), N = 2000000

Dimension (D) = 100

ADMM Configuration: Adaptive update [7] with and  0.5initial  1, 1  

Ongoing work

‒ Comparative study of the ADMM based tool for several other multiclass algorithms.

‒ Extension of the generic framework to solve advanced non-convex learning

formulations.

*
w

opt
w

*opt

opt

w w

w



1

2
1

1 2
, 1 1

1

1
(,) arg min log()

2

T
i yi

T
i c

C

N C
k k k

C c c cC
i c

c

e

N e



 


    


x w

x w
w w

w w w z u

1

2
2

1 1

1 2
, , 1

(,) arg min { (1) }
2 2C

C
jck k k

C jc jc c c

c j c

z
z


    



      
z z

z z w z u

1 1 1 ck k k k

c c c c

     u w z u

1

1
1

((),) log()

T
i yi

TC
i c

N

i i C
i

c

e
L f y

e





x w

w w x w
x

2

1

,

() = { (1) }
2

jc

C jc jc

c j

z
R z   z z

* Work done during Goutham Kamath’s internship at Bosch.

http://spark.apache.org/mllib/
https://github.com/linkedin/photon-ml
http://arxiv.org/abs/1506.07552
https://arxiv.org/abs/1406.3469
http://scikit-learn.org/stable/

