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Introduction and Motivation Q Supported Multiclass Algorithms

 Big-Data capability provides advantage by harnessing sophisticated insights relevant to _ _
various real-life applications. Methods Loss Function L(f,,(x,),y;) Regularizer R(w)
d Spark’s distributed In-memory computing_frar_nework provides_, practitioners with a Multiclass Classification ( \
powerful, fast, scalable and easy way to build big-data ML algorithms. c D W?c
3 However, existing large-scale ML tools on Spark such as : MLIlib [1] or PhotonML [2] L1, L2, L1-L2 regularized /N Z_mg(ex?wyi /ZC e e zlgl5jc< “‘W jc‘+(1_0‘) 5 |
provide limited coverage for multi-class problems and sometimes inaccurate solutions. multinomial regression | - ) ’
d This work extends “ ADMM based scalable machine learning on Spark ” [3] to handle T with « €[0,1]
large-scale machine learning for multi-class problems. L1, L2, L1-L2SVM [N (@-6,0) X (W, —w,)),
Existing state-of-the-art technologies
Q Distributed Algorithms Experimental Results
First Order methods: use first order gradient estimates, secant approximates etc. _ _ _ _
. . . . Hadoop Configuration (Apache 1.1.1) Spark Configuration (Apache 1.6)
— Low per-iteration computation complexity,
. _ * No. of Nodes =6 = spark.num.executors = 17
— Dimension independent convergence,
However = No. of cores (per node) = 12 (Intel @3.20GHz) = spark.executor.memory = 6 GB
| _— * RAM size (per node) = 32 GB = spark.driver.memory = 4 GB
— Slower convergence due to oscillations, S _ _
» Hard Disk size (per node) = 500 GB = spark.driver.maxResultSize = 4 GB

— Not well suited for ill-conditioned problems typically seen in Machine Learning,
E.g. Parallel SGD [4], Hogwild! [5], Splash [6].
Second Order methods : use additional second order Hesslan (approximate) information.
— Captures the curvature of the objective function,

ADMM Configuration: Adaptive o0 update [7] with p,..... =0.9 and 6 =1, 1 =1
 Synthetic Data Set (Binary Classification used in [3])

. xeRP &~N(0,X =sign(w' x+ [11111-1-1-1-1— (1 02 02 )
— Faster convergence rate than first order methods, = (0.Z) y=sign( £) w [L1L1 ;’rolﬁpli L-1-1 02 - 02 0
— Well suited for 1ll conditioned problems seen in Machine Learning, R -
However Small Data (~5GB), N = 200000 b 15154000 2=(02 02 1
’ : _ _ group g 10
— Do not scale favorable with dimension, Big Data (~50GB), N = 2000000 000, ... ] \ 0 )

Dimension (D) = 100

— High per-iteration computation complexity. remaining 80% sparse group

E.g. ADMM [7], DANE[8] etc.

0 Randomized Algorithms: uses a subsampled or low rank representation of the original Table 1. Average time performance over 10 experiments in sec (std. deviation shown In parenthesis).
big-data to solve a small-scale equivalent problem. Methods ADMM MLIib
— Can be solved using traditional ML software, Data Set size = 5GB with N = 200000, D =100
— Avoids the need for distributed storage/analytics systems. L2-logistic regression (A=0.1 a=0) 157.57(0.04) 139.68(2.06)
However, L1-logistic regression (A=0.1 a=1) 157.05(1.54) 266.9(169.16)
— Inexact/approximate solutions depends on data property. E.g. LOCO [9] Data Set size = 50GB with N = 2000000, D =100

3 We propose a generic multi-class formulation and adopt the second order Alternating L2-logistic regression (4A=0.1 a=0) 13937.3(10.34) 14045.7 (411.78)
Direction Method of Multipliers (ADMM) to obtain more accurate solutions without L1-logistic regression ( A=0.1 a=1) 15381.8 (5.59) 13155.2 (307.60)

compromising on computational efficiency.
1 Real-Life MNIST Handwritten Digit Recognition Data(~ 1GB .csv format)

Our Approach | aMLLIB
. . . . 0.8 : .
 Generic Multiclass Formulation O :'IS}E; ?(/I)rl:/IML Table 2. Time performance (in sec)
Given training samples T = (x.,V;), where xe R and ye<{l...,C} 0.6 Methods | ADMM | PhotonML
> :
N = no. of observations (samples) D :=dimensions. @ C := Total classes = 0.4 Binary 321.54 118.81
g E’ 5vs. 8) | (12.52) (1.39)
Solve, - min 5 2, (T . (40 ¥) + AR(W, ... W) 0.2 Multiclass | 1229.56 N/A
_ 1 N 0 | | (3vs5vs 8)| (50.44)
= min WZ L(fo, w. O, Y)+AR(Z,...20) st w, =2z, Vce{l...C} 0 20 40 60 80 100
e e i=1 Iteration
1 LO) loss functi R() arivats Fig. 1. Solution Convergence
where, L(-):= loss function, R(-):=regularization. - -
: Discussion W —w’
O Multinomial Logistic Regression ADMM Step (k+1t iteration): — Fig. 1 shows the relative error of the estimated models (W) i.e! Hwopt ‘ compared

to the scikit-learn [10] solution (W°?).

X] W,

_ 1 N e Yi p C )
k+1 _ + F Sk k
- Wy We )T S a{V?,TVL” N ;IOQ( C exiwe )+ 2 CZZ;HWC e TUe |, — Fig. 1 shows MLIib (packaged with Spark) fails to provide optimal solutions.
c=1
. Z: < 2 — PhotonML provides very fast and accurate algorithms, but limited to AVRO data
k+1 _ B icy , P k+1 K P y 9 :
- (ze) _arz?,,r?:m’;é"c{a 2jo| (=) 2 3 2 ;‘WC v el formats, which incurs additional overhead for data conversion.
Ut =wt -2k v — AI?I\_/IM provides optimal solutions (see Fig. 1) without compromising on computational
N T 2 efficiency (Table 1l & 2).
e ! Yi i - -
Here, L(f, .. (%), ¥)=> log(—= T )and R(z,...z;) = 25,-(;{0!‘2,-0 +(1-a) 21} — However, ADMM convergence is very sensitive to © updates.
i=1 'e o
- — Current ADMM solution provides biggest generic repository of efficient distributed
Remarks machine learning algorithms available in Python.

— ADMM decomposes a larger problem into two (or many) smaller sub-problems in
variables W, 7

— Computation overhead due to big-data Is handled in the w-step In a distributed
fashion,

— Many multiclass ML algorithms can be solved using a simple distributed QP solver.

Ongoing work
— Comparative study of the ADMM based tool for several other multiclass algorithms.

— Extension of the generic framework to solve advanced non-convex learning
formulations.
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