
 Generic Multiclass Formulation

Given training samples where and

no. of observations (samples) dimensions. Total classes

Solve,

where, loss function, regularization.

 Multinomial Logistic Regression ADMM Step (k+1th iteration):

‒

‒

‒

Here, and

Remarks

‒ ADMM decomposes a larger problem into two (or many) smaller sub-problems in

variables

‒ Computation overhead due to big-data is handled in the -step in a distributed

fashion,

‒ Many multiclass ML algorithms can be solved using a simple distributed QP solver.

ADMM: - step

 Big-Data capability provides advantage by harnessing sophisticated insights relevant to

various real-life applications.

 Spark’s distributed in-memory computing framework provides practitioners with a

powerful, fast, scalable and easy way to build big-data ML algorithms.

 However, existing large-scale ML tools on Spark such as : MLlib [1] or PhotonML [2]

provide limited coverage for multi-class problems and sometimes inaccurate solutions.

 This work extends “ ADMM based scalable machine learning on Spark ” [3] to handle

large-scale machine learning for multi-class problems.
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Introduction and Motivation

Existing state-of-the-art technologies

 Distributed Algorithms

First Order methods : use first order gradient estimates, secant approximates etc.

‒ Low per-iteration computation complexity,

‒ Dimension independent convergence,

However,

‒ Slower convergence due to oscillations,

‒ Not well suited for ill-conditioned problems typically seen in Machine Learning,

E.g. Parallel SGD [4], Hogwild! [5], Splash [6].

Second Order methods : use additional second order Hessian (approximate) information.

‒ Captures the curvature of the objective function,

‒ Faster convergence rate than first order methods,

‒ Well suited for ill conditioned problems seen in Machine Learning,

However,

‒ Do not scale favorable with dimension,

‒ High per-iteration computation complexity.

E.g. ADMM [7], DANE[8] etc.

 Randomized Algorithms: uses a subsampled or low rank representation of the original

big-data to solve a small-scale equivalent problem.

‒ Can be solved using traditional ML software,

‒ Avoids the need for distributed storage/analytics systems.

However,

‒ Inexact/approximate solutions depends on data property. E.g. LOCO [9]

 We propose a generic multi-class formulation and adopt the second order Alternating

Direction Method of Multipliers (ADMM) to obtain more accurate solutions without

compromising on computational efficiency.

Our Approach
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 Supported Multiclass Algorithms

Experimental Results

Hadoop Configuration (Apache 1.1.1)

 No. of Nodes = 6 

 No. of cores (per node) = 12 (Intel @3.20GHz)

 RAM size (per node) = 32 GB

 Hard Disk size (per node) = 500 GB

Spark  Configuration (Apache 1.6)

 spark.num.executors = 17

 spark.executor.memory = 6 GB

 spark.driver.memory = 4 GB

 spark.driver.maxResultSize = 4 GB

 Synthetic Data Set (Binary Classification used in [3])

Methods ADMM MLlib

Data Set size = 5GB  with N = 200000, D =100

L2-logistic regression (                           ) 157.57(0.04) 139.68(2.06)

L1-logistic regression (                           ) 157.05(1.54) 266.9(169.16)

Data Set size = 50GB  with N = 2000000, D =100

L2-logistic regression (                           ) 13937.3 (10.34) 14045.7 (411.78)

L1-logistic regression (                           ) 15381.8 (5.59) 13155.2 (307.60)
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Table 1. Average time performance over 10 experiments in sec (std. deviation shown in parenthesis).

Table 2. Time performance (in sec)

 Real-Life MNIST Handwritten Digit Recognition Data(~ 1GB .csv format)
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Discussion

‒ Fig. 1 shows the relative error of the estimated models ( ) i.e. compared

to the scikit-learn [10] solution ( ).

‒ Fig. 1 shows MLlib (packaged with Spark) fails to provide optimal solutions.

‒ PhotonML provides very fast and accurate algorithms, but limited to AVRO data

formats, which incurs additional overhead for data conversion.

‒ ADMM provides optimal solutions (see Fig. 1) without compromising on computational

efficiency (Table 1 & 2).

‒ However, ADMM convergence is very sensitive to updates.

‒ Current ADMM solution provides biggest generic repository of efficient distributed

machine learning algorithms available in Python.

Fig. 1. Solution Convergence 
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Ongoing work

‒ Comparative study of the ADMM based tool for several other multiclass algorithms.

‒ Extension of the generic framework to solve advanced non-convex learning

formulations.
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* Work done during Goutham Kamath’s internship at Bosch.
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